Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Cell ; 185(4): 729-745.e20, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063085

RESUMEN

Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Adulto , Anciano , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/inmunología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Variación Genética , Humanos , Evasión Inmune , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Modelos Biológicos , Células Mieloides/patología , Análisis de Componente Principal , RNA-Seq , Análisis de la Célula Individual , Linfocitos T/inmunología
3.
Nat Rev Cancer ; 21(6): 345-359, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33837297

RESUMEN

Immunotherapy has revolutionized cancer treatment, but efficacy remains limited in most clinical settings. Cancer is a systemic disease that induces many functional and compositional changes to the immune system as a whole. Immunity is regulated by interactions of diverse cell lineages across tissues. Therefore, an improved understanding of tumour immunology must assess the systemic immune landscape beyond the tumour microenvironment (TME). Importantly, the peripheral immune system is required to drive effective natural and therapeutically induced antitumour immune responses. In fact, emerging evidence suggests that immunotherapy drives new immune responses rather than the reinvigoration of pre-existing immune responses. However, new immune responses in individuals burdened with tumours are compromised even beyond the TME. Herein, we aim to comprehensively outline the current knowledge of systemic immunity in cancer.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Humanos
4.
Clin Transl Med ; 10(2): e99, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32564509

RESUMEN

BACKGROUND: Brain arteriovenous malformations (AVMs) are rare, potentially devastating cerebrovascular lesions that can occur in both children and adults. AVMs are largely sporadic and the basic disease biology remains unclear, limiting advances in both detection and treatment. This study aimed to investigate human brain AVMs for endothelial-to-mesenchymal transition (EndMT), a process recently implicated in cerebral cavernous malformations (CCMs). METHODS: We used 29 paraffin-embedded and 13 fresh/frozen human brain AVM samples to profile expression of panels of EndMT-associated proteins and RNAs. CCMs, a cerebrovascular disease also characterized by abnormal vasculature, were used as a primary comparison, given that EndMT specifically contributes to CCM disease biology. AVM-derived cell lines were isolated from three fresh, surgical AVM samples and characterized by protein expression. RESULTS: We observed high collagen deposition, high PAI-1 expression, and expression of EndMT-associated transcription factors such as KLF4, SNAI1, and SNAI2 and mesenchymal-associated markers such as VIM, ACTA2, and S100A4. SMAD-dependent TGF-ß signaling was not strongly activated in AVMs and this pathway may be only partially involved in mediating EndMT. Using serum-free culture conditions, we isolated myofibroblast-like cell populations from AVMs that expressed a unique range of proteins associated with mature cell types and with EndMT. Conditioned medium from these cells led to increased proliferation of HUVECs and SMCs. CONCLUSIONS: Collectively, our results suggest a role for EndMT in AVM disease. This may lead to new avenues for disease models to further our understanding of disease mechanisms, and to the development of improved diagnostics and therapeutics.

5.
Nat Med ; 26(7): 1125-1134, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451499

RESUMEN

Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.


Asunto(s)
Infecciones Bacterianas/inmunología , Neoplasias de la Mama/inmunología , Melanoma Experimental/inmunología , Microambiente Tumoral/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Activación de Linfocitos/inmunología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Linfocitos T/inmunología , Microambiente Tumoral/genética
6.
Science ; 366(6471)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31831639

RESUMEN

The gut microbiota produce hundreds of molecules that are present at high concentrations in the host circulation. Unraveling the contribution of each molecule to host biology remains difficult. We developed a system for constructing clean deletions in Clostridium spp., the source of many molecules from the gut microbiome. By applying this method to the model commensal organism Clostridium sporogenes, we knocked out genes for 10 C. sporogenes-derived molecules that accumulate in host tissues. In mice colonized by a C. sporogenes for which the production of branched short-chain fatty acids was knocked out, we discovered that these microbial products have immunoglobulin A-modulatory activity.


Asunto(s)
Clostridium/genética , Clostridium/metabolismo , Microbioma Gastrointestinal/genética , Edición Génica/métodos , Interacciones Microbiota-Huesped , Redes y Vías Metabólicas/genética , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Eliminación de Gen , Ratones , Ratones Endogámicos
7.
Ann Clin Transl Neurol ; 1(12): 982-95, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25574473

RESUMEN

OBJECTIVE: Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. METHODS: We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. RESULTS: We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. INTERPRETATION: This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...