Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(6): e13733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911263

RESUMEN

There are two primary measures of the amount of genetic variation in a population at a locus: heterozygosity and the number of alleles. Effective population size (N e) provides both an expectation of the amount of heterozygosity in a population at drift-mutation equilibrium and the rate of loss of heterozygosity because of genetic drift. In contrast, the number of alleles in a population at drift-mutation equilibrium is a function of both N e and census size (N C). In addition, populations with the same N e can lose allelic variation at very different rates. Allelic variation is generally much more sensitive to bottlenecks than heterozygosity. Expressions used to adjust for the effects of violations of the ideal population on N e do not provide good predictions of the loss of allelic variation. These effects are much greater for loci with many alleles, which are often important for adaptation. We show that there is a linear relationship between the reduction of N C and the corresponding reduction of the expected number of alleles at drift-mutation equilibrium. This makes it possible to predict the expected effect of a bottleneck on allelic variation. Heterozygosity provides good estimates of the rate of adaptive change in the short-term, but allelic variation provides important information about long-term adaptive change. The guideline of long-term N e being greater than 500 is often used as a primary genetic metric for evaluating conservation status. We recommend that this guideline be expanded to take into account allelic variation as well as heterozygosity.

3.
Mol Ecol ; 31(2): 498-511, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699656

RESUMEN

The sympatric existence of genetically distinguishable populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves certain parts of the genome. We returned to the first reported case of salmonid sympatry, initially detected through contrasting homozygosity at a single allozyme locus (coding for lactate dehydrogenase A) in brown trout in the small Lakes Bunnersjöarna, Sweden. First, we verified the existence of the two coexisting demes using a 96-SNP fluidigm array. We then applied whole-genome resequencing of pooled DNA to explore genome-wide diversity within and between these demes; nucleotide diversity was higher in deme I than in deme II. Strong genetic divergence is observed with genome-wide FST  ≈ 0.2. Compared with data from populations of similar small lakes, this divergence is of similar magnitude as that between reproductively isolated populations. Individual whole-genome resequencing of two individuals per deme suggests higher inbreeding in deme II versus deme I, indicating different degree of isolation. We located two gene-copies for LDH-A and found divergence between demes in a regulatory section of one of these genes. However, we did not find a perfect fit between the sequence data and previous allozyme results, and this will require further research. Our data demonstrates genome-wide divergence governed mostly by genetic drift but also by diversifying selection in coexisting populations. This type of hidden biodiversity needs consideration in conservation management.


Asunto(s)
Aislamiento Reproductivo , Simpatría , Animales , Variación Genética , Genética de Población , Humanos , Isoenzimas , Trucha/genética
5.
Trends Ecol Evol ; 34(12): 1070-1079, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31296345

RESUMEN

Restoring gene flow into small, isolated populations can alleviate genetic load and decrease extinction risk (i.e., genetic rescue), yet gene flow is rarely augmented as a conservation strategy. Due to this discrepancy between opportunity and action, a recent call was made for widespread genetic rescue attempts. However, several aspects of augmenting gene flow are poorly understood, including the magnitude and duration of beneficial effects and when deleterious effects are likely to occur. We discuss the remaining uncertainties of genetic rescue in order to promote and direct future research and to hasten progress toward implementing this potentially powerful conservation strategy on a broader scale.


Asunto(s)
Conservación de los Recursos Naturales , Flujo Génico , Variación Genética , Endogamia , Incertidumbre
6.
Evol Appl ; 11(8): 1212-1218, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30151034

RESUMEN

The Buddha taught that everything is connected and constantly changing. These fundamental observations of the world are shared by ecology and evolution. We are living in a time of unprecedented rates of extinction. Science provides us with the information that we need to address this extinction crisis. However, the problems underlying extinction generally do not result from a lack of scientific understanding, but they rather result from an unwillingness to take the needed action. I present mindfulness and meditative aspects of Zen practice that provide the deeper "knowing," or awareness that we need to inspire action on these problems.

8.
Glob Chang Biol ; 23(11): 4663-4674, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28374524

RESUMEN

Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.


Asunto(s)
Cambio Climático , Hibridación Genética , Especies Introducidas , Oncorhynchus mykiss/genética , Trucha/genética , Animales , Humanos , Oncorhynchus mykiss/fisiología , Temperatura , Trucha/fisiología
9.
Mol Ecol Resour ; 17(3): 362-365, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28319339

RESUMEN

Recently, Lowry et al. addressed the ability of RADseq approaches to detect loci under selection in genome scans. While the authors raise important considerations, such as accounting for the extent of linkage disequilibrium in a study system, we strongly disagree with their overall view of the ability of RADseq to inform our understanding of the genetic basis of adaptation. The family of RADseq protocols has radically improved the field of population genomics, expanding by several orders of magnitude the number of markers available while substantially reducing the cost per marker. Researchers whose goal is to identify regions of the genome under selection must consider the LD of the experimental system; however, there is no magical LD cutoff below which researchers should refuse to use RADseq. Lowry et al. further made two major arguments: a theoretical argument that modeled the likelihood of detecting selective sweeps with RAD markers, and gross summaries based on an anecdotal collection of RAD studies. Unfortunately, their simulations were off by two orders of magnitude in the worst case, while their anecdotes merely showed that it is possible to get widely divergent densities of RAD tags for any particular experiment, either by design or due to experimental efficacy. We strongly argue that RADseq remains a powerful and efficient approach that provides sufficient marker density for studying selection in many natural populations. Given limited resources, we argue that researchers should consider a wide range of trade-offs among genomic techniques, in light of their study question and the power of different techniques to answer it.


Asunto(s)
Adaptación Fisiológica , Genómica , Secuencia de Bases , Desequilibrio de Ligamiento , Análisis de Secuencia de ADN
10.
Mol Ecol ; 26(3): 799-813, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28093817

RESUMEN

Genetic effects are often overlooked in endangered species monitoring, and populations showing positive growth are often assumed to be secure. However, the continued reproductive success of a few individuals may mask issues such as inbreeding depression, especially in long-lived species. Here, we test for inbreeding depression in little spotted kiwi (Apteryx owenii) by comparing a population founded with two birds to one founded with 40 birds, both from the same source population and both showing positive population growth. We used a combination of microsatellite genotypes, nest observations and modelling to examine the consequences of assessing population viability exclusively via population growth. We demonstrate (i) significantly lower hatching success despite significantly higher reproductive effort in the population with two founders; (ii) positive growth in the population with two founders is mainly driven by ongoing chick production of the founding pair; and (iii) a substantial genetic load in the population founded with two birds (10-15 diploid lethal equivalents). Our results illustrate that substantial, cryptic inbreeding depression may still be present when a population is growing, especially in long-lived species with overlapping generations.


Asunto(s)
Genética de Población , Depresión Endogámica , Paleognatos/genética , Animales , Especies en Peligro de Extinción , Carga Genética , Genotipo , Repeticiones de Microsatélite , Densidad de Población
11.
Trends Ecol Evol ; 32(2): 141-152, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28089120

RESUMEN

The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology-evolution (eco-evo) interactions requires explicitly addressing population-level processes - genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value of population-level research for gaining a mechanistic understanding of eco-evo interactions. The breadth of eco-evolutionary research should expand to incorporate the breadth of evolution itself.


Asunto(s)
Evolución Biológica , Genética de Población , Demografía , Ecología , Dinámica Poblacional , Selección Genética
12.
Mol Ecol ; 26(2): 420-430, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27933683

RESUMEN

I consider how the study of genetic variation has influenced efforts to conserve natural populations over the last 50 years. Studies with allozymes in the 1970s provided the first estimates of the amount of genetic variation within and between natural populations at multiple loci. These early studies played an important role in developing plans to conserve species. The description of genetic variation in mitochondrial DNA in the early 1980s laid the foundation for the field of phylogeography, which provided a deeper look in time of the relationships and connectivity among populations. The development of microsatellites in the 1990s provided much more powerful means to describe genetic variation at nuclear loci, including the ability to detect past bottlenecks and estimate current effective population size with a single temporal sample. In the 2000s, single nucleotide polymorphisms presented a cornucopia of loci that has greatly improved power to estimate genetic and population demographic parameters important for conservation. Today, population genomics presents the ability to detect regions of the genome that are affected by natural selection (e.g. local adaptation or inbreeding depression). In addition, the ability to genotype historical samples has provided power to understand how climate change and other anthropogenic phenomena have affected populations. Modern molecular techniques provide unprecedented power to understand genetic variation in natural populations. Nevertheless, application of this information requires sound understanding of population genetics theory. I believe that current training in conservation genetics focuses too much on the latest techniques and too little on understanding the conceptual basis which is needed to interpret these data and ask good questions.


Asunto(s)
Conservación de los Recursos Naturales , Genética de Población/métodos , Cambio Climático , ADN Mitocondrial/genética , Variación Genética , Isoenzimas/genética , Repeticiones de Microsatélite , Filogeografía , Polimorfismo de Nucleótido Simple , Densidad de Población
13.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27881749

RESUMEN

Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.


Asunto(s)
Alelos , Hibridación Genética , Oncorhynchus/genética , Selección Genética , Animales , Genotipo , Especies Introducidas , Oncorhynchus/clasificación
14.
Evol Appl ; 9(10): 1205-1218, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27877200

RESUMEN

Inbreeding depression (reduced fitness of individuals with related parents) has long been a major focus of ecology, evolution, and conservation biology. Despite decades of research, we still have a limited understanding of the strength, underlying genetic mechanisms, and demographic consequences of inbreeding depression in the wild. Studying inbreeding depression in natural populations has been hampered by the inability to precisely measure individual inbreeding. Fortunately, the rapidly increasing availability of high-throughput sequencing data means it is now feasible to measure the inbreeding of any individual with high precision. Here, we review how genomic data are advancing our understanding of inbreeding depression in the wild. Recent results show that individual inbreeding and inbreeding depression can be measured more precisely with genomic data than via traditional pedigree analysis. Additionally, the availability of genomic data has made it possible to pinpoint loci with large effects contributing to inbreeding depression in wild populations, although this will continue to be a challenging task in many study systems due to low statistical power. Now that reliably measuring individual inbreeding is no longer a limitation, a major focus of future studies should be to more accurately quantify effects of inbreeding depression on population growth and viability.

15.
Mol Ecol ; 24(22): 5616-32, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26454263

RESUMEN

The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.


Asunto(s)
Genética de Población , Preferencia en el Apareamiento Animal , Selección Genética , Borrego Cimarrón/genética , Adaptación Biológica/genética , Animales , Cromosomas , Femenino , Flujo Genético , Variación Genética , Genómica , Cuernos , Masculino , Montana , Polimorfismo de Nucleótido Simple , Densidad de Población , Receptores Acoplados a Proteínas G/genética , Análisis de Secuencia de ADN , Wyoming , Cromosoma X
17.
G3 (Bethesda) ; 5(11): 2463-73, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26384769

RESUMEN

Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated regions. A better understanding of how recombination affects genome evolution is crucial for interpreting genomic data; unfortunately, current knowledge mainly originates from a few model species. Salmonid fishes provide a valuable system for studying the effects of recombination in nonmodel species. Salmonid females generally produce thousands of embryos, providing large families for conducting inheritance studies. Further, salmonid genomes are currently rediploidizing after a whole genome duplication and can serve as models for studying the role of homeologous crossovers on genome evolution. Here, we present a detailed interrogation of recombination patterns in sockeye salmon (Oncorhynchus nerka). First, we use RAD sequencing of haploid and diploid gynogenetic families to construct a dense linkage map that includes paralogous loci and location of centromeres. We find a nonrandom distribution of paralogs that mainly cluster in extended regions distally located on 11 different chromosomes, consistent with ongoing homeologous recombination in these regions. We also estimate the strength of interference across each chromosome; results reveal strong interference and crossovers are mostly limited to one per arm. Interference was further shown to continue across centromeres, but metacentric chromosomes generally had at least one crossover on each arm. We discuss the relevance of these findings for both mapping and population genomic studies.


Asunto(s)
Cromosomas/genética , Ligamiento Genético , Genoma , Recombinación Genética , Salmón/genética , Animales
19.
Trends Ecol Evol ; 30(8): 456-62, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26122483

RESUMEN

Invasive hybridization is causing loss of biodiversity worldwide. The spread of such introgression can occur even when hybrids have reduced Darwinian fitness, which decreases the frequency of hybrids due to low survival or reproduction through time. This paradox can be partially explained by spatial sorting, where genotypes associated with dispersal increase in frequency at the edge of expansion, fueling further expansion and allowing invasive hybrids to increase in frequency through space rather than time. Furthermore, because all progeny of a hybrid will be hybrids (i.e., will possess genes from both parental taxa), nonnative admixture in invaded populations can increase even when most hybrid progeny do not survive. Broader understanding of spatial sorting is needed to protect native biodiversity.


Asunto(s)
Distribución Animal , Hibridación Genética , Especies Introducidas , Adaptación Biológica , Animales , Conservación de los Recursos Naturales , Aptitud Genética , Conducta Espacial
20.
J Hered ; 106(3): 217-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25838153

RESUMEN

A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between homeologous chromosomes. Nearly 20% of loci in the salmonid genome are duplicated and share the same alleles (isoloci), apparently due to homeologous recombination. Half-tetrad analysis revealed that isoloci tend to be telomeric. These results suggested that residual tetrasomic inheritance of isoloci results from homeologous recombination near chromosome ends and that continued disomic inheritance resulted from homologous pairing of centromeric regions. Many current genetic maps of salmonids are based on single nucleotide polymorphisms and microsatellites that are no longer duplicated. Therefore, long sections of chromosomes on these maps are poorly represented, especially telomeric regions. In addition, preferential multivalent pairing of homeologs from the same species in F1 hybrids results in an excess of nonparental gametes (so-called pseudolinkage). We consider how not including duplicated loci has affected our understanding of population and evolutionary genetics of salmonids, and we discuss how incorporating these loci will benefit our understanding of population genomics.


Asunto(s)
Evolución Molecular , Genética de Población , Poliploidía , Salmonidae/genética , Animales , Mapeo Cromosómico , Emparejamiento Cromosómico , Femenino , Duplicación de Gen , Ligamiento Genético , Marcadores Genéticos , Recombinación Homóloga , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...