Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22075, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086933

RESUMEN

In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of topics. Businesses can leverage this data to extract valuable insights, improve their services, and effectively reach a broader audience based on users' expressed opinions on social media platforms. To harness the potential of this extensive and unstructured data, a deep understanding of Natural Language Processing (NLP) is crucial. Existing approaches for sentiment analysis (SA) often rely on word co-occurrence frequencies, which prove inefficient in practical scenarios. Identifying this research gap, this paper presents a framework for concept-level sentiment analysis, aiming to enhance the accuracy of sentiment analysis (SA). A comprehensive Urdu language dataset was constructed by collecting data from YouTube, consisting of various talks and reviews on topics such as movies, politics, and commercial products. The dataset was further enriched by incorporating language rules and Deep Neural Networks (DNN) to optimize polarity detection. For sentiment analysis, the proposed framework employs predefined rules to trigger sentiment flow from words to concepts, leveraging the dependency relations among different words in a sentence based on Urdu language grammatical rules. In cases where predefined patterns are not triggered, the framework seamlessly switches to its sub-symbolic counterpart, passing the data to the DNN for sentence classification. Experimental results demonstrate that the proposed framework surpasses state-of-the-art approaches, including LSTM, CNN, SVM, LR, and MLP, achieving an improvement of 6-7% on Urdu dataset. In conclusion, this research paper introduces a novel framework for concept-level sentiment analysis of Urdu language data sourced from social media platforms. By combining language rules and DNN, the proposed framework demonstrates superior performance compared to existing methodologies, showcasing its effectiveness in accurately analyzing sentiment in Urdu text data.

2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36772430

RESUMEN

The early, valid prediction of heart problems would minimize life threats and save lives, while lack of prediction and false diagnosis can be fatal. Addressing a single dataset alone to build a machine learning model for the identification of heart problems is not practical because each country and hospital has its own data schema, structure, and quality. On this basis, a generic framework has been built for heart problem diagnosis. This framework is a hybrid framework that employs multiple machine learning and deep learning techniques and votes for the best outcome based on a novel voting technique with the intention to remove bias from the model. The framework contains two consequent layers. The first layer contains simultaneous machine learning models running over a given dataset. The second layer consolidates the outputs of the first layer and classifies them as a second classification layer based on novel voting techniques. Prior to the classification process, the framework selects the top features using a proposed feature selection framework. It starts by filtering the columns using multiple feature selection methods and considers the top common features selected. Results from the proposed framework, with 95.6% accuracy, show its superiority over the single machine learning model, classical stacking technique, and traditional voting technique. The main contribution of this work is to demonstrate how the prediction probabilities of multiple models can be exploited for the purpose of creating another layer for final output; this step neutralizes any model bias. Another experimental contribution is proving the complete pipeline's ability to be retrained and used for other datasets collected using different measurements and with different distributions.


Asunto(s)
Aprendizaje Automático , Probabilidad
3.
Healthcare (Basel) ; 11(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766986

RESUMEN

The coronavirus epidemic has spread to virtually every country on the globe, inflicting enormous health, financial, and emotional devastation, as well as the collapse of healthcare systems in some countries. Any automated COVID detection system that allows for fast detection of the COVID-19 infection might be highly beneficial to the healthcare service and people around the world. Molecular or antigen testing along with radiology X-ray imaging is now utilized in clinics to diagnose COVID-19. Nonetheless, due to a spike in coronavirus and hospital doctors' overwhelming workload, developing an AI-based auto-COVID detection system with high accuracy has become imperative. On X-ray images, the diagnosis of COVID-19, non-COVID-19 non-COVID viral pneumonia, and other lung opacity can be challenging. This research utilized artificial intelligence (AI) to deliver high-accuracy automated COVID-19 detection from normal chest X-ray images. Further, this study extended to differentiate COVID-19 from normal, lung opacity and non-COVID viral pneumonia images. We have employed three distinct pre-trained models that are Xception, VGG19, and ResNet50 on a benchmark dataset of 21,165 X-ray images. Initially, we formulated the COVID-19 detection problem as a binary classification problem to classify COVID-19 from normal X-ray images and gained 97.5%, 97.5%, and 93.3% accuracy for Xception, VGG19, and ResNet50 respectively. Later we focused on developing an efficient model for multi-class classification and gained an accuracy of 75% for ResNet50, 92% for VGG19, and finally 93% for Xception. Although Xception and VGG19's performances were identical, Xception proved to be more efficient with its higher precision, recall, and f-1 scores. Finally, we have employed Explainable AI on each of our utilized model which adds interpretability to our study. Furthermore, we have conducted a comprehensive comparison of the model's explanations and the study revealed that Xception is more precise in indicating the actual features that are responsible for a model's predictions.This addition of explainable AI will benefit the medical professionals greatly as they will get to visualize how a model makes its prediction and won't have to trust our developed machine-learning models blindly.

4.
J Healthc Eng ; 2023: 1566123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36704578

RESUMEN

Over the past few years, a tremendous change has occurred in computer-aided diagnosis (CAD) technology. The evolution of numerous medical imaging techniques has enhanced the accuracy of the preliminary analysis of several diseases. Magnetic resonance imaging (MRI) is a prevalent technology extensively used in evaluating the progress of the spread of malignant tissues or abnormalities in the human body. This article aims to automate a computationally efficient mechanism that can accurately identify the tumor from MRI images and can analyze the impact of the tumor. The proposed model is robust enough to classify the tumors with minimal training data. The generative variational autoencoder models are efficient in reconstructing the images identical to the original images, which are used in adequately training the model. The proposed self-learning algorithm can learn from the insights from the autogenerated images and the original images. Incorporating long short-term memory (LSTM) is faster processing of the high dimensional imaging data, making the radiologist's task and the practitioners more comfortable assessing the tumor's progress. Self-learning models need comparatively less data for the training, and the models are more resource efficient than the various state-of-art models. The efficiency of the proposed model has been assessed using various benchmark metrics, and the obtained results have exhibited an accuracy of 89.7%. The analysis of the progress of tumor growth is presented in the current study. The obtained accuracy is not pleasing in the healthcare domain, yet the model is reasonably fair in dealing with a smaller size dataset by making use of an image generation mechanism. The study would outline the role of an autoencoder in self-learning models. Future technologies may include sturdy feature engineering models and optimized activation functions that would yield a better result.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Diagnóstico por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...