Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Total Environ ; 903: 166216, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567286

RESUMEN

Considering long-term population effects of chronic exposure to contaminants remains limited in ecological risk assessment. Field evidence that multigenerational exposure influences organisms' sensitivity is still scarce, and mechanisms have yet to be elucidated in the environmental context. This study focuses on the crustacean Gammarus fossarum, for which an increased tolerance to cadmium (Cd) has previously been reported in a naturally low-contaminated headwater stream. Our objectives were to investigate whether Cd tolerance is a common phenomenon in headwater populations, and to elucidate the nature of the tolerance and its intergenerational transmission. For this, we carried out an in-depth in situ characterization of Cd exposure (gammarids' caging) and levels of tolerance in nine populations on a regional scale, as well as laboratory maintenance and cross-breeding of contaminated and uncontaminated populations. Acute tolerance levels correlate positively with bioavailable Cd contamination levels among streams. The contaminated and non-contaminated populations differ about two-fold in sensitivity to Cd. Tolerance was found in all age classes of contaminated populations, it can be transiently lost during the year, and it was transmissible to offspring. In addition, tolerance levels dropped significantly when organisms were transferred to a Cd-free environment for two months. These organisms also ceased producing tolerant offspring, confirming a non-genetic transmission of Cd tolerance between generations. These findings support that Cd tolerance corresponds to non-genetic acclimation combined with transgenerational plasticity. Moreover, cross-breeding revealed that tolerance transmission to offspring is not limited to maternal effect. We suggest epigenetics as a plausible mechanism for the plasticity of Cd sensitivity observed in the field. Our results therefore highlight the neglected role of plasticity and non-genetic transmission of modified sensitivities during the long-term exposure of natural populations to environmental contamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...