RESUMEN
Despite their beneficial actions as immunosuppressants, glucocorticoids (GC) have devastating effects on the musculoskeletal and cardiac systems, as long-term treated patients exhibit high incidence of falls, bone fractures, and cardiovascular events. Herein, we show that GC upregulate simultaneously in bone, skeletal muscle, and the heart the expression of E3 ubiquitin ligases (atrogenes), known to stimulate the proteasomal degradation of proteins. Activation of vitamin D receptor (VDR) signaling with the VDR ligands calcitriol or eldecalcitol prevented GC-induced atrogene upregulation in vivo and ex vivo in bone/muscle organ cultures and preserved tissue structure/mass and function of the 3 tissues in vivo. Direct pharmacologic inhibition of the proteasome with carfilzomib also conferred musculoskeletal protection. Genetic loss of the atrogene MuRF1-mediated protein ubiquitination in ΔRING mice afforded temporary or sustained protection from GC excess in bone or skeletal and heart muscle. We concluded that the atrogene pathway downstream of MuRF1 underlies GC action in bone, muscle, and the heart, and it can be pharmacologically or genetically targeted to confer protection against the damaging actions of GC simultaneously in the 3 tissues.
Asunto(s)
Glucocorticoides , Cardiopatías , Proteínas Musculares , Músculo Esquelético , Transducción de Señal , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Glucocorticoides/farmacología , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Transducción de Señal/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Cardiopatías/prevención & control , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Cardiopatías/genética , Humanos , Masculino , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/prevención & control , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Calcitriol/farmacología , FemeninoRESUMEN
Osteoarthritis (OA) of the knee is a degenerative condition of the skeletal extracellular matrix (ECM) marked by the loss of articular cartilage and subchondral bone homeostasis. Treatments for OA in the knee beyond full joint replacement are lacking primarily due to gaps in molecular knowledge of the biological drivers of disease. Here, Mass Spectrometry Imaging (MSI) enabled molecular spatial mapping of the proteomic landscape of human knee tissues. Histologic sections of human tibial plateaus from OA patients and cadaveric controls were treated with collagenase III to target ECM proteins prior to imaging using a timsTOF fleX mass spectrometer (Bruker) for matrix-assisted laser desorption ionization (MALDI)-MSI of bone and cartilage proteins in human knees. Spatial MSI data of the knee, using sections of the tibial plateau from non-arthritic, cadaveric donors or from knee replacement patients with medial OA were processed and automatically segmented identifying distinct areas of joint damage. ECM peptide markers compared either OA to cadaveric tissues or OA medial to OA lateral. Not only did candidate peptides distinguish OA relative to intact cartilage, but also emphasized a significant spatial difference between OA and intact subchondral bone (AUROC >0.85). Overall, 31 peptide candidates from ECM proteins, including COL1A1, COL3A1, and unanticipated detection of collagens COL6A1 and COL6A3 in adult bone, exhibited significantly elevated abundance in diseased tissue. Highly specific hydroxyproline-containing collagens dominated OA subchondral bone directly under regions of lost cartilage revealing dramatic tissue remodeling providing molecular details on the progression of joint degeneration in OA. The identification of specific spatial markers for the progression of subchondral bone degeneration in OA advances our molecular understanding of coupled deterioration of joint tissues.
RESUMEN
Obesity can increase the risk of bone fragility, even when bone mass is intact. This fragility stems from poor bone quality, potentially caused by deficiencies in bone matrix material properties. However, cellular and molecular mechanisms leading to obesity-related bone fragility are not fully understood. Using male mouse models of obesity, we discovered TGF-ß signaling plays a critical role in mediating the effects of obesity on bone. High-carbohydrate and high-fat diets increase TGF-ß signaling in osteocytes, which impairs their mitochondrial function, increases cellular senescence, and compromises perilacunar/canalicular remodeling and bone quality. By specifically inhibiting TGF-ß signaling in mouse osteocytes, some of the negative effects of high-fat and high-carbohydrate diets on bones, including the lacunocanalicular network, perilacunar/canalicular remodeling, senescence, and mechanical properties such as yield stress, were mitigated. DMP1-Cre-mediated deletion of TGF-ß receptor II also blunted adverse effects of high-fat and high-carbohydrate diets on energy balance and metabolism. These findings suggest osteocytes are key in controlling bone quality in response to high-fat and high-carbohydrate diets. Calibrating osteocyte function could mitigate bone fragility associated with metabolic diseases while reestablishing energy balance.
Asunto(s)
Dieta Alta en Grasa , Obesidad , Osteocitos , Factor de Crecimiento Transformador beta , Animales , Osteocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Masculino , Obesidad/metabolismo , Transducción de Señal , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Remodelación Ósea , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Huesos/metabolismo , Densidad Ósea/efectos de los fármacos , Carbohidratos de la Dieta/efectos adversos , Carbohidratos de la Dieta/administración & dosificaciónRESUMEN
Glucocorticoids (GC) and parathyroid hormone (PTH) are widely used therapeutic endocrine hormones where their effects on bone and joint arise from actions on multiple skeletal cell types. In osteocytes, GC and PTH exert opposing effects on perilacunar canalicular remodeling (PLR). Suppressed PLR can impair bone quality and joint homeostasis, including in GC-induced osteonecrosis. However, combined effects of GC and PTH on PLR are unknown. Given the untapped potential to target osteocytes to improve skeletal health, this study sought to test the feasibility of therapeutically mitigating PLR suppression. Focusing on subchondral bone and joint homeostasis, we hypothesize that PTH(1-34), a PLR agonist, could rescue GC-suppressed PLR. The skeletal effects of GC and PTH(1-34), alone or combined, were examined in male and female mice by micro-computed tomography, mechanical testing, histology, and gene expression analysis. For each outcome, females were more responsive to GC and PTH(1-34) than males. GC and PTH(1-34) exerted regional differences, with GC increasing trabecular bone volume but reducing cortical bone thickness, stiffness, and ultimate force. Despite PTH(1-34)'s anabolic effects on trabecular bone, it did not rescue GC's catabolic effects on cortical bone. Likewise, cartilage integrity and subchondral bone apoptosis, tartrate-resistant acid phosphatase (TRAP) activity, and osteocyte lacunocanalicular networks showed no evidence that PTH(1-34) could offset GC-dependent effects. Rather, GC and PTH(1-34) each increased cortical bone gene expression implicated in bone resorption by osteoclasts and osteocytes, including Acp5, Mmp13, Atp6v0d2, Ctsk, differences maintained when GC and PTH(1-34) were combined. Since PTH(1-34) is insufficient to rescue GC's effects on young female mouse bone, future studies are needed to determine if osteocyte PLR suppression, due to GC, aging, or other factors, can be offset by a PLR agonist.
Asunto(s)
Densidad Ósea , Remodelación Ósea , Glucocorticoides , Osteocitos , Hormona Paratiroidea , Animales , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Hormona Paratiroidea/farmacología , Femenino , Masculino , Ratones , Glucocorticoides/farmacología , Remodelación Ósea/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Ratones Endogámicos C57BL , Huesos/efectos de los fármacos , Huesos/metabolismo , Microtomografía por Rayos XRESUMEN
Skeletal defects are hallmark features of many extracellular matrix (ECM) and collagen-related disorders. However, a biological function in bone has never been defined for the highly evolutionarily conserved type IV collagen. Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form α1α1α2 (IV) heterotrimers that represent a fundamental basement membrane constituent present in every organ of the body, including the skeleton. COL4A1 and COL4A2 mutations cause Gould syndrome, a variable and clinically heterogenous multisystem disorder generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular manifestations. We have previously identified elevated TGFß signaling as a pathological insult resulting from Col4a1 mutations and demonstrated that reducing TGFß signaling ameliorate ocular and cerebrovascular phenotypes in Col4a1 mutant mouse models of Gould syndrome. In this study, we describe the first characterization of skeletal defects in Col4a1 mutant mice that include a developmental delay in osteogenesis and structural, biomechanical and vascular alterations of mature bones. Using distinct mouse models, we show that allelic heterogeneity influences the presentation of skeletal pathology resulting from Col4a1 mutations. Importantly, we found that TGFß target gene expression is elevated in developing bones from Col4a1 mutant mice and show that genetically reducing TGFß signaling partially ameliorates skeletal manifestations. Collectively, these findings identify a novel and unsuspected role for type IV collagen in bone biology, expand the spectrum of manifestations associated with Gould syndrome to include skeletal abnormalities, and implicate elevated TGFß signaling in skeletal pathogenesis in Col4a1 mutant mice.
Asunto(s)
Colágeno Tipo IV , Modelos Animales de Enfermedad , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Ratones , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Huesos/metabolismo , Huesos/patología , Mutación , Osteogénesis/genéticaRESUMEN
Osteocytes locally remodel their surrounding tissue through perilacunar canalicular remodeling (PLR). During lactation, osteocytes remove minerals to satisfy the metabolic demand, resulting in increased lacunar volume, quantifiable with synchrotron X-ray radiation micro-tomography (SRµCT). Although the effects of lactation on PLR are well-studied, it remains unclear whether PLR occurs uniformly throughout the bone and what mechanisms prevent PLR from undermining bone quality. We used SRµCT imaging to conduct an in-depth spatial analysis of the impact of lactation and osteocyte-intrinsic MMP13 deletion on PLR in murine bone. We found larger lacunae undergoing PLR are located near canals in the mid-cortex or endosteum. We show lactation-induced hypomineralization occurs 14 µm away from lacunar edges, past a hypermineralized barrier. Our findings reveal that osteocyte-intrinsic MMP13 is crucial for lactation-induced PLR near lacunae in the mid-cortex but not for whole-bone resorption. This research highlights the spatial control of PLR on mineral distribution during lactation.
Asunto(s)
Remodelación Ósea , Lactancia , Osteocitos , Microtomografía por Rayos X , Animales , Lactancia/fisiología , Femenino , Osteocitos/metabolismo , Osteocitos/fisiología , Ratones , Remodelación Ósea/fisiología , Metaloproteinasa 13 de la Matriz/metabolismoRESUMEN
Tissue engineering strategies show great potential for repairing osteochondral defects in osteoarthritic joints; however, these approaches often rely on passaging cells multiple times to obtain enough cells to produce functional tissue. Unfortunately, monolayer expansion culture causes chondrocyte dedifferentiation, which is accompanied by a phenotypical and morphological shift in chondrocyte properties that leads to a reduction in the quality of de novo cartilage produced. Thus, the objective of this study was to evaluate transcriptional variations during in vitro expansion culture and determine how differences in cell phenotype from monolayer expansion alter development of functional engineered cartilage. We used an unbiased approach to explore genome-wide transcriptional differences in chondrocyte phenotype at passage 1 (P1), P3, and P5, and then seeded cells into hydrogel scaffolds at P3 and P5 to assess cells' abilities to produce cartilaginous extracellular matrix in three dimensional (3D). We identified distinct phenotypic differences, specifically for genes related to extracellular organization and cartilage development. Both P3 and P5 chondrocytes were able to produce chondrogenic tissue in 3D, with P3 cells producing matrix with greater compressive properties and P5 cells secreting matrix with higher glycosaminoglycan/DNA and collagen/DNA ratios. Furthermore, we identified 24 genes that were differentially expressed with passaging and enriched in human osteoarthritis (OA) genome-wide association studies, thereby prioritizing them as functionally relevant targets to improve protocols that recapitulate functional healthy cartilage with cells from adult donors. Specifically, we identified novel genes, such as TMEM190 and RAB11FIP4, which were enriched with human hip OA and may play a role in chondrocyte dedifferentiation. This work lays the foundation for several pathways and genes that could be modulated to enhance the efficacy for chondrocyte culture for tissue regeneration, which could have transformative impacts for cell-based cartilage repair strategies.
Asunto(s)
Condrocitos , Ingeniería de Tejidos , Condrocitos/metabolismo , Condrocitos/citología , Animales , Ingeniería de Tejidos/métodos , Bovinos , Condrogénesis/genética , Humanos , Células Cultivadas , Regulación de la Expresión Génica , Cartílago/metabolismo , Matriz Extracelular/metabolismoRESUMEN
Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.
Asunto(s)
Remodelación Ósea , Osteocitos , Humanos , Anciano , Masculino , Animales , Ratones , Remodelación Ósea/fisiología , Colágeno/farmacología , Envejecimiento , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
OBJECTIVE: Cartilage tissue engineering strategies that use autologous chondrocytes require in vitro expansion of cells to obtain enough cells to produce functional engineered tissue. However, chondrocytes dedifferentiate during expansion culture, limiting their ability to produce chondrogenic tissue and their utility for cell-based cartilage repair strategies. The current study identified conditions that favor cartilage production and the mechanobiological mechanisms responsible for these benefits. DESIGN: Chondrocytes were isolated from juvenile bovine knee joints and cultured with (primed) or without (unprimed) a growth factor cocktail. Gene expression, cell morphology, cell adhesion, cytoskeletal protein distribution, and cell mechanics were assessed. Following passage 5, cells were embedded into agarose hydrogels to evaluate functional properties of engineered cartilage. RESULTS: Priming cells during expansion culture altered cell phenotype and chondrogenic tissue production. Unbiased ribonucleic acid-sequencing analysis suggested, and experimental studies confirmed, that growth factor priming delays dedifferentiation associated changes in cell adhesion and cytoskeletal organization. Priming also overrode mechanobiological pathways to prevent chondrocytes from remodeling their cytoskeleton to accommodate the stiff, monolayer microenvironment. Passage 1 primed cells deformed less and had lower yes associated protein 1 activity than unprimed cells. Differences in cell adhesion, morphology, and cell mechanics between primed and unprimed cells were mitigated by passage 5. CONCLUSIONS: Priming suppresses mechanobiologic cytoskeletal remodeling to prevent chondrocyte dedifferentiation, resulting in more cartilage-like tissue-engineered constructs.
Asunto(s)
Cartílago Articular , Condrocitos , Animales , Bovinos , Condrocitos/metabolismo , Células Cultivadas , Cartílago , Ingeniería de Tejidos/métodos , Condrogénesis , Péptidos y Proteínas de Señalización Intercelular/metabolismoRESUMEN
Understanding the biomechanical behavior of the intervertebral disc is crucial for studying disease mechanisms and developing tissue engineering strategies for managing disc degeneration. We used synchrotron small-angle X-ray scattering to investigate how changes to collagen behavior contribute to alterations in the disc's ability to resist compression. Coccygeal motion segments from 6-month-old lean Sprague-Dawley rats ( n=7) and diabetic obese University of California Davis type 2 diabetes mellitus (UCD-T2DM) rats ( n=6, diabetic for 68±7 days) were compressed during simultaneous synchrotron scanning to measure collagen strain at the nanoscale (beamline 7.3.3 of the Advanced Light Source). After compression, the annulus fibrosus was assayed for nonenzymatic cross-links. In discs from lean rats, resistance to compression involved two main energy-dissipation mechanisms at the nanoscale: (1) rotation of the two groups of collagen fibrils forming the annulus fibrosus and (2) straightening (uncrimping) and stretching of the collagen fibrils. In discs from diabetic rats, both mechanisms were significantly impaired. Specifically, diabetes reduced fibril rotation by 31% and reduced collagen fibril strain by 30% (compared to lean discs). The stiffening of collagen fibrils in the discs from diabetic rats was consistent with a 31% higher concentration of nonenzymatic cross-links and with evidence of earlier onset plastic deformations such as fibril sliding and fibril-matrix delamination. These findings suggest that fibril reorientation, stretching, and straightening are key deformation mechanisms that facilitate whole-disc compression, and that type 2 diabetes impairs these efficient and low-energy elastic deformation mechanisms, thereby altering whole-disc behavior and inducing the earlier onset of plastic deformation.
RESUMEN
PURPOSE OF REVIEW: The integration of data from multiple genomic assays from humans and non-human model organisms is an effective approach to identify genes involved in skeletal fragility and fracture risk due to osteoporosis and other conditions. This review summarizes genome-wide genetic variation and gene expression data resources relevant to the discovery of genes contributing to skeletal fragility and fracture risk. RECENT FINDINGS: Genome-wide association studies (GWAS) of osteoporosis-related traits are summarized, in addition to gene expression in bone tissues in humans and non-human organisms, with a focus on rodent models related to skeletal fragility and fracture risk. Gene discovery approaches using these genomic data resources are described. We also describe the Musculoskeletal Knowledge Portal (MSKKP) that integrates much of the available genomic data relevant to fracture risk. The available genomic resources provide a wealth of knowledge and can be analyzed to identify genes related to fracture risk. Genomic resources that would fill particular scientific gaps are discussed.
Asunto(s)
Fracturas Óseas , Osteoporosis , Humanos , Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Osteoporosis/genética , Fracturas Óseas/genética , Huesos , Expresión Génica , BiologíaRESUMEN
Dysregulation of cell signaling in chondrocytes and in bone cells, such as osteocytes, osteoblasts, osteoclasts, and an elevated burden of senescent cells in cartilage and bone, are implicated in osteoarthritis (OA). Mass spectrometric analyses provides a crucial molecular tool-kit to understand complex signaling relationships in age-related diseases, such as OA. Here we introduce a novel mass spectrometric workflow to promote proteomic studies of bone. This workflow uses highly specialized steps, including extensive overnight demineralization, pulverization, and incubation for 72 h in 6 M guanidine hydrochloride and EDTA, followed by proteolytic digestion. Analysis on a high-resolution Orbitrap Eclipse and Orbitrap Exploris 480 mass spectrometer using Data-Independent Acquisition (DIA) provides deep coverage of the bone proteome, and preserves post-translational modifications, such as hydroxyproline. A spectral library-free quantification strategy, directDIA, identified and quantified over 2,000 protein groups (with ≥ 2 unique peptides) from calcium-rich bone matrices. Key components identified were proteins of the extracellular matrix (ECM), bone-specific proteins (e.g., secreted protein acidic and cysteine rich, SPARC, and bone sialoprotein 2, IBSP), and signaling proteins (e.g., transforming growth factor beta-2, TGFB2), and lysyl oxidase homolog 2 (LOXL2), an important protein in collagen crosslinking. Post-translational modifications (PTMs) were identified without the need for specific enrichment. This includes collagen hydroxyproline modifications, chemical modifications for collagen self-assembly and network formation. Multiple senescence factors were identified, such as complement component 3 (C3) protein of the complement system and many matrix metalloproteinases, that might be monitored during age-related bone disease progression. Our innovative workflow yields in-depth protein coverage and quantification strategies to discover underlying biological mechanisms of bone aging and to provide tools to monitor therapeutic interventions. These novel tools to monitor the bone proteome open novel horizons to investigate bone-specific diseases, many of which are age-related.
Asunto(s)
Osteoartritis , Proteoma , Humanos , Proteoma/análisis , Proteómica/métodos , Hidroxiprolina , Huesos/metabolismo , Osteoartritis/metabolismo , ColágenoRESUMEN
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Asunto(s)
Huesos , Osteocitos , Ratones , Masculino , Animales , Femenino , Osteocitos/metabolismo , Huesos/metabolismo , Hueso Cortical/metabolismo , Densidad Ósea , Metabolismo EnergéticoRESUMEN
SUMMARY: Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFß release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance: TGFß is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFß causes several bone disorders and skeletal muscle weakness. Reducing excess TGFß release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.
RESUMEN
The National Institute on Aging sponsored a symposium at the Gerontological Society of America (GSA) annual meeting in Indianapolis, Indiana, to discuss recent discoveries related to senescent and inflammatory mechanisms in aging and disease. Consistent with the 2022 Biological Sciences GSA program led by Dr. Rozalyn Anderson, the symposium featured early-stage investigators and a leader in the field of geroscience research. Cell senescence and immune interactions coordinate homeostatic and protective programming throughout the life span. Dysfunctional communication in this exchange eventuates in inflammation-related compositional changes in aged tissues, including propagation of the senescence-associated secretory phenotype and accumulation of senescent and exhausted immune cells. Presentations in this symposium explored senescent and immune-related dysfunction in aging from diverse viewpoints and featured emerging cellular and molecular methods. A central takeaway from the event was that the use of new models and approaches, including single-cell -omics, novel mouse models, and 3D culture systems, is revealing dynamic properties and interactions of senescent and immune cell fates. This knowledge is critical for devising new therapeutic approaches with important translational relevance.
Asunto(s)
Envejecimiento , National Institute on Aging (U.S.) , Animales , Estados Unidos , Ratones , Fenotipo , Senescencia Celular , InflamaciónRESUMEN
Molecular omics technologies, including proteomics, have enabled the elucidation of key signaling pathways that mediate bidirectional communication between the brain and bone tissues. Here we provide a brief summary of the clinical and molecular evidence of the need to study the bone-brain axis of cross-tissue cellular communication. Clear clinical and molecular evidence suggests biological interactions and similarities between bone and brain cells. Here we review the current mass spectrometric techniques for studying brain and bone diseases with an emphasis on neurodegenerative diseases and osteoarthritis/osteoporosis, respectively. Further study of the bone-brain axis on a molecular level and evaluation of the role of proteins, neuropeptides, osteokines, and hormones in molecular pathways linked to bone and brain diseases is critically needed. The use of mass spectrometry and other omics technologies to analyze these cross-tissue signaling events and interactions will help us better understand disease progression and comorbidities and potentially identify new pathways and targets for therapeutic interventions. Proteomic measurements are particularly favorable for investigating the role of signaling and secreted and circulating analytes and identifying molecular and metabolic pathways implicated in age-related diseases.
RESUMEN
Subchondral bone participates in crosstalk with articular cartilage to maintain joint homeostasis, and disruption of either tissue results in overall joint degeneration. Among the subchondral bone changes observed in osteoarthritis (OA), subchondral bone plate (SBP) thickening has a time-dependent relationship with cartilage degeneration and has recently been shown to be regulated by osteocytes. Here, we evaluate the effect of age on SBP thickness and cartilage degeneration in aging mice. We find that SBP thickness significantly increases by 18-months of age, corresponding temporally with increased cartilage degeneration. To identify factors in subchondral bone that may participate in bone cartilage crosstalk or OA, we leveraged mouse transcriptomic data from one joint tissue compartment - osteocyte-enriched bone - to search for enrichment with human OA in UK Biobank and Arthritis Research UK Osteoarthritis Genetics (arcOGEN) GWAS using the mouse2human (M2H, www.mouse2human.org) strategy. Genes differentially expressed in aging mouse bone are significantly enriched for human OA, showing joint site-specific (knee vs. hip) relationships, exhibit temporal associations with age, and unique gene clusters are implicated in each type of OA. Application of M2H identifies genes with known and unknown functions in osteocytes and OA development that are clinically associated with human OA. Altogether, this work prioritizes genes with a potential role in bone/cartilage crosstalk for further mechanistic study based on their association with human OA in GWAS.
RESUMEN
Osteocytes, the most abundant and mechanosensitive cells in bone tissue, play a pivotal role in bone homeostasis and mechano-responsiveness, orchestrating the intricate balance between bone formation and resorption under daily activity. Studying osteocyte connectivity and understanding their intricate arrangement within the lacunar canalicular network (LCN) is essential for unraveling bone physiology. This is particularly true as our bones age, which is associated with decreased integrity of the osteocyte network, disrupted mass transport, and lower sensitivity to the mechanical stimuli that allow the skeleton to adapt to changing demands. Much work has been carried out to investigate this relationship, often involving high resolution microscopy of discrete fragments of this network, alongside advanced computational modelling of individual cells. However, traditional methods of segmenting and measuring osteocyte connectomics are time-consuming and labour-intensive, often hindered by human subjectivity and limited throughput. In this study, we explore the application of deep learning and computer vision techniques to automate the segmentation and measurement of osteocyte connectomics, enabling more efficient and accurate analysis. We compare several state-of-the-art computer vision models (U-Nets and Vision Transformers) to successfully segment the LCN, finding that an Attention U-Net model can accurately segment and measure 81.8% of osteocytes and 42.1% of dendritic processes, when compared to manual labelling. While further development is required, we demonstrate that this degree of accuracy is already sufficient to distinguish between bones of young (2 month old) and aged (36 month old) mice, as well as capturing the degeneration induced by genetic modification of osteocytes. By harnessing the power of these advanced technologies, further developments can unravel the complexities of osteocyte networks in unprecedented detail, revolutionising our understanding of bone health and disease.
RESUMEN
PURPOSE OF REVIEW: The effect of the transforming growth factor beta (TGFß) signaling pathway on joint homeostasis is tissue-specific, non-linear, and context-dependent, representing a unique complexity in targeting TGFß signaling in joint disease. Here we discuss the variety of mechanisms that TGFß signaling employs in the synovial joint to maintain healthy joint crosstalk and the ways in which aberrant TGFß signaling can result in joint degeneration. RECENT FINDINGS: Osteoarthritis (OA) epitomizes a condition of disordered joint crosstalk in which multiple joint tissues degenerate leading to overall joint deterioration. Synovial joint tissues, such as subchondral bone, articular cartilage, and synovium, as well as mesenchymal stem cells, each demonstrate aberrant TGFß signaling during joint disease, whether by excessive or suppressed signaling, imbalance of canonical and non-canonical signaling, a perturbed mechanical microenvironment, or a distorted response to TGFß signaling during aging. The synovial joint relies upon a sophisticated alliance among each joint tissue to maintain joint homeostasis. The TGFß signaling pathway is a key regulator of the health of individual joint tissues, and the subsequent interaction among these different joint tissues, also known as joint crosstalk. Dissecting the sophisticated function of TGFß signaling in the synovial joint is key to therapeutically interrogating the pathway to optimize overall joint health.
Asunto(s)
Cartílago Articular , Osteoartritis , Cartílago Articular/metabolismo , Humanos , Osteoartritis/metabolismo , Transducción de Señal , Membrana Sinovial/metabolismo , Factor de Crecimiento Transformador betaRESUMEN
Molecular understanding of osteoarthritis (OA) has greatly increased through careful analysis of tissue samples, preclinical models, and large-scale agnostic "-omic" studies. There is broad acceptance that systemic and biomechanical signals affect multiple tissues of the joint, each of which could potentially be targeted to improve patient outcomes. In this review six experts in different aspects of OA pathogenesis provide their independent view on what they believe to be good tractable approaches to OA target discovery. We conclude that molecular discovery has been high but future transformative studies require a multidisciplinary holistic approach to develop therapeutic strategies with high clinical efficacy.