Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713510

RESUMEN

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Asunto(s)
Modelos Animales de Enfermedad , Interleucina-6 , Mieloma Múltiple , Animales , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Humanos , Ratones , Interleucina-6/metabolismo , Ratones Transgénicos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Masculino , Femenino , Células Plasmáticas/inmunología , Gammopatía Monoclonal de Relevancia Indeterminada/inmunología , Gammopatía Monoclonal de Relevancia Indeterminada/patología
2.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586061

RESUMEN

During B cell development, cells progress through multiple developmental stages with the pro-B cell stage defining commitment to the B cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We find here that knockout of YY1 at the pro-B cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9- DL4 feeder system, as well as in vivo after injection into sub-lethally irradiated Rag1 -/- mice. These T lineage-like cells lose their B lineage transcript profile and gain a T cell lineage profile. Single cell-RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages indicating unusual lineage plasticity. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 likely regulates commitment in multiple cell lineages.

3.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355795

RESUMEN

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Asunto(s)
Adenosina Trifosfato , Células de la Médula Ósea , Células Plasmáticas , Animales , Ratones , Adenosina Trifosfato/metabolismo , Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Linaje de la Célula , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Mutación , Osteoblastos/metabolismo , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Transducción de Señal
4.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328086

RESUMEN

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned hIL-6 transgenic NSG mice (NSG+hIL6) reliably support the engraftment of malignant and pre-malignant human plasma cells including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and post-relapse myeloma, plasma cell leukemia, and AL amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells, developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single cell RNA sequencing showed non-malignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma engrafted mice given CAR T-cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.

5.
J Immunol ; 212(1): 154-164, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37966267

RESUMEN

The proteasome inhibitor bortezomib (BTZ) is proposed to deplete activated B cells and plasma cells. However, a complete picture of the mechanisms underlying BTZ-induced apoptosis in B lineage cells remains to be established. In this study, using a direct in vitro approach, we show that deletion of the tumor suppressor and cell cycle regulator p53 rescues recently activated mouse B cells from BTZ-induced apoptosis. Furthermore, BTZ treatment elevated intracellular p53 levels, and p53 deletion constrained apoptosis, as recently stimulated cells first transitioned from the G1 to S phase of the cell cycle. Moreover, combined inhibition of the p53-associated cell cycle regulators and E3 ligases MDM2 and anaphase-promoting complex/cyclosome induced cell death in postdivision B cells. Our results reveal that efficient cell cycle progression of activated B cells requires proteasome-driven inhibition of p53. Consequently, BTZ-mediated interference of proteostasis unleashes a p53-dependent cell cycle-associated death mechanism in recently activated B cells.


Asunto(s)
Antineoplásicos , Inhibidores de Proteasoma , Animales , Ratones , Bortezomib/farmacología , Bortezomib/metabolismo , Inhibidores de Proteasoma/farmacología , Antineoplásicos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Complejo de la Endopetidasa Proteasomal/metabolismo , Apoptosis
6.
Blood ; 143(2): 139-151, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616575

RESUMEN

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/metabolismo , Antígenos CD28/metabolismo , Linfocitos T , Antígeno de Maduración de Linfocitos B/metabolismo , Recurrencia Local de Neoplasia/metabolismo
7.
Cell Rep Med ; 4(12): 101336, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118406

RESUMEN

Pre-existing anti-human leukocyte antigen (HLA) allo-antibodies constitute a major barrier to transplantation. Current desensitization approaches fail due to ineffective depletion of allo-specific memory B cells (Bmems) and long-lived plasma cells (LLPCs). We evaluate the efficacy of chimeric antigen receptor (CAR) T cells targeting CD19 and B cell maturation antigen (BCMA) to eliminate allo-antibodies in a skin pre-sensitized murine model of islet allo-transplantation. We find that treatment of allo-sensitized hosts with CAR T cells targeting Bmems and LLPCs eliminates donor-specific allo-antibodies (DSAs) and mitigates hyperacute rejection of subsequent islet allografts. We then assess the clinical efficacy of the CAR T therapy for desensitization in patients with multiple myeloma (MM) with pre-existing HLA allo-antibodies who were treated with the combination of CART-BCMA and CART-19 (ClinicalTrials.gov: NCT03549442) and observe clinically meaningful allo-antibody reduction. These findings provide logical rationale for clinical evaluation of CAR T-based immunotherapy in highly sensitized candidates to promote successful transplantation.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Células Plasmáticas , Antígeno de Maduración de Linfocitos B , Linfocitos T , Inmunoterapia , Anticuerpos
8.
Sci Adv ; 9(46): eadg8126, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37967174

RESUMEN

Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using Foxn1-Cre-driven ablation of Klf6 gene in TEC, we identified Klf6 as a critical factor in TEC development. Klf6 deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed. Among cortical TEC (cTEC), a previously unreported cTEC population expressing the transcription factor Sox10 was relatively expanded. Within medullary TEC (mTEC), mTEC I and Tuft-like mTEC IV were disproportionately decreased. Klf6 deficiency altered chromatin accessibility and affected TEC chromatin configuration. Consistent with these defects, naïve conventional T cells and invariant natural killer T cells were reduced in the spleen. Late stages of T cell receptor-dependent selection of thymocytes were affected, and mice exhibited autoimmunity. Thus, Klf6 has a prosurvival role and affects the development of specific TEC subsets contributing to thymic function.


Asunto(s)
Regulación de la Expresión Génica , Timocitos , Animales , Ratones , Diferenciación Celular/genética , Cromatina/metabolismo , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Timocitos/metabolismo , Timo/metabolismo
9.
FASEB J ; 37(12): e23283, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983957

RESUMEN

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Microglía/metabolismo
10.
Mol Ther ; 31(9): 2702-2714, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37533256

RESUMEN

Lyme disease is the most common vector-borne infectious disease in the United States, in part because a vaccine against it is not currently available for humans. We propose utilizing the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform to generate a Lyme disease vaccine like the successful clinical vaccines against SARS-CoV-2. Of the antigens expressed by Borrelia burgdorferi, the causative agent of Lyme disease, outer surface protein A (OspA) is the most promising candidate for vaccine development. We have designed and synthesized an OspA-encoding mRNA-LNP vaccine and compared its immunogenicity and protective efficacy to an alum-adjuvanted OspA protein subunit vaccine. OspA mRNA-LNP induced superior humoral and cell-mediated immune responses in mice after a single immunization. These potent immune responses resulted in protection against bacterial infection. Our study demonstrates that highly efficient mRNA vaccines can be developed against bacterial targets.


Asunto(s)
COVID-19 , Enfermedad de Lyme , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Enfermedad de Lyme/prevención & control , Antígenos de Superficie/genética , Proteínas de la Membrana Bacteriana Externa/genética
11.
Eur J Immunol ; 53(9): e2250362, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37366295

RESUMEN

Nonhematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, the study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils and lymph nodes (LN), lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable nonhematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LN stromal cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and LN. The presence and spatial distribution of transcriptionally defined cell types were confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSCs in human disease.


Asunto(s)
Bancos de Muestras Biológicas , Criopreservación , Humanos , Linfocitos , Ganglios Linfáticos/patología , Células del Estroma
12.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131811

RESUMEN

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.

13.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37227784

RESUMEN

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/ß sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/ß cDNAs from CD8EXP into Jurkat 76 cells (TCR-/-) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.


Asunto(s)
Trasplante de Riñón , Transcriptoma , Receptores de Antígenos de Linfocitos T alfa-beta/genética , ARN , Aloinjertos , Rechazo de Injerto/genética
14.
Sci Immunol ; 8(83): eade2335, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235682

RESUMEN

The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies. We coupled this approach with high-dimensional immune profiling to study a cohort of pediatric patients with SIgAD and household control siblings. We found that mucosal and systemic antibody networks cooperate to maintain homeostasis by targeting a common subset of commensal microbes. In IgA-deficiency, we find increased translocation of specific bacterial taxa associated with elevated levels of systemic IgG targeting fecal microbiota. Associated features of immune system dysregulation in IgA-deficient mice and humans included elevated levels of inflammatory cytokines, enhanced follicular CD4 T helper cell frequency and activation, and an altered CD8 T cell activation state. Although SIgAD is clinically defined by the absence of serum IgA, the symptomatology and immune dysregulation were concentrated in the SIgAD participants who were also fecal IgA deficient. These findings reveal that mucosal IgA deficiency leads to aberrant systemic exposures and immune responses to commensal microbes, which increase the likelihood of humoral and cellular immune dysregulation and symptomatic disease in patients with IgA deficiency.


Asunto(s)
Deficiencia de IgA , Humanos , Niño , Ratones , Animales , Inmunoglobulina A Secretora , Inmunoglobulina M , Homeostasis
15.
Am J Transplant ; 23(6): 759-775, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871629

RESUMEN

To date, plasma cell (PC)-targeted therapies have been limited by suboptimal PC depletion and antibody rebound. We hypothesized this is partly because of PC residence in protective bone marrow (BM) microenvironments. The purpose of this proof-of-concept study was to examine the effects of the CXCR4 antagonist, plerixafor, on PC BM residence; its safety profile (alone and in combination with a proteasome inhibitor, bortezomib); and the transcriptional effect on BMPCs in HLA-sensitized kidney transplant candidates. Participants were enrolled into 3 groups: group A (n = 4), plerixafor monotherapy; and groups B (n = 4) and C (n = 4), plerixafor and bortezomib combinations. CD34+ stem cell and PC levels increased in the blood after plerixafor treatment. PC recovery from BM aspirates varied depending on the dose of plerixafor and bortezomib. Single-cell RNA sequencing on BMPCs from 3 group C participants pretreatment and posttreatment revealed multiple populations of PCs, with a posttreatment enrichment of oxidative phosphorylation, proteasome assembly, cytoplasmic translation, and autophagy-related genes. Murine studies demonstrated dually inhibiting the proteasome and autophagy resulted in greater BMPC death than did monotherapies. In conclusion, this pilot study revealed anticipated effects of combined plerixafor and bortezomib on BMPCs, an acceptable safety profile, and suggests the potential for autophagy inhibitors in desensitization regimens.


Asunto(s)
Compuestos Heterocíclicos , Trasplante de Riñón , Humanos , Animales , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Células Plasmáticas , Médula Ósea , Complejo de la Endopetidasa Proteasomal , Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Movilización de Célula Madre Hematopoyética , Proyectos Piloto , Compuestos Heterocíclicos/farmacología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Receptores CXCR4
16.
bioRxiv ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36798151

RESUMEN

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/ß sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/ß cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.

17.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798373

RESUMEN

Non-hematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils, lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable non-hematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LNSC cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and lymph nodes. The presence and spatial distribution of transcriptionally defined cell types was confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSC in human disease.

19.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579963

RESUMEN

In lymphopenic environments, secondary lymphoid organs regulate the size of B and T cell compartments by supporting the homeostatic proliferation of mature lymphocytes. The molecular mechanisms underlying these responses and their functional consequences remain incompletely understood. To evaluate homeostasis of the mature B cell pool during lymphopenia, we turned to an adoptive transfer model of purified follicular B cells into Rag2-/- mouse recipients. Highly purified follicular B cells transdifferentiated into marginal zone-like B cells when transferred into Rag2-/- lymphopenic hosts but not into wild-type hosts. In lymphopenic spleens, transferred B cells gradually lost their follicular phenotype and acquired characteristics of marginal zone B cells, as judged by cell surface phenotype, expression of integrins and chemokine receptors, positioning close to the marginal sinus, and an ability to rapidly generate functional plasma cells. Initiation of follicular to marginal zone B cell transdifferentiation preceded proliferation. Furthermore, the transdifferentiation process was dependent on Notch2 receptors in B cells and expression of Delta-like 1 Notch ligands by splenic Ccl19-Cre+ fibroblastic stromal cells. Gene expression analysis showed rapid induction of Notch-regulated transcripts followed by upregulated Myc expression and acquisition of broad transcriptional features of marginal zone B cells. Thus, naive mature B cells are endowed with plastic transdifferentiation potential in response to increased stromal Notch ligand availability during lymphopenia.


Asunto(s)
Linfopenia , Animales , Linfocitos B/metabolismo , Proliferación Celular , Homeostasis , Linfopenia/genética , Ratones , Ratones Endogámicos C57BL
20.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34852217

RESUMEN

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Asunto(s)
Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , SARS-CoV-2/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de ARNm/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adyuvantes Inmunológicos , Animales , Células HEK293 , Humanos , Inmunidad Humoral , Interleucina-6/genética , Interleucina-6/metabolismo , Liposomas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Subunidades de Proteína/genética , Vacunas de ARNm/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA