Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Intervalo de año de publicación
1.
Heliyon ; 10(5): e26423, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434363

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.

2.
Biochem Biophys Res Commun ; 696: 149490, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241811

RESUMEN

The Lysosomal Storage disease known as Mucopolysaccharidosis type II, is caused by mutations affecting the iduronate-2-sulfatase required for heparan and dermatan sulfate catabolism. The central nervous system (CNS) is mostly and severely affected by the accumulation of both substrates. The complexity of the CNS damage observed in MPS II patients has been limitedly explored. The use of mass spectrometry (MS)-based proteomics tools to identify protein profiles may yield valuable information about the pathological mechanisms of Hunter syndrome. In this further study, we provide a new comparative proteomic analysis of MPS II models by using a pipeline consisting of the identification of native protein complexes positioned selectively by using a specific antibody, coupled with mass spectrometry analysis, allowing us to identify changes involving in a significant number of new biological functions, including a specific brain antioxidant response, a down-regulated autophagic, the suppression of sulfur catabolic process, a prominent liver immune response and the stimulation of phagocytosis among others.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Mucopolisacaridosis II/genética , Proteómica , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/metabolismo , Glicosaminoglicanos/metabolismo , Encéfalo/metabolismo
3.
Mol Ther Methods Clin Dev ; 31: 101153, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38107675

RESUMEN

Mucopolysaccharidosis (MPS) IVA is a lysosomal storage disorder caused by mutations in the GALNS gene that leads to the lysosomal accumulation of keratan sulfate (KS) and chondroitin 6-sulfate, causing skeletal dysplasia and cardiopulmonary complications. Current enzyme replacement therapy does not impact the bone manifestation of the disease, supporting that new therapeutic alternatives are required. We previously demonstrated the suitability of the CRISPR-nCas9 system to rescue the phenotype of human MPS IVA fibroblasts using iron oxide nanoparticles (IONPs) as non-viral vectors. Here, we have extended this strategy to an MPS IVA mouse model by inserting the human GALNS cDNA into the ROSA26 locus. The results showed increased GALNS activity, mono-KS reduction, partial recovery of the bone pathology, and non-IONPs-related toxicity or antibody-mediated immune response activation. This study provides, for the first time, in vivo evidence of the potential of a CRISPR-nCas9-based gene therapy strategy for treating MPS IVA using non-viral vectors as carriers.

4.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003337

RESUMEN

Mucopolysaccharidosis IVA (MPS IVA) is a rare disorder caused by mutations in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) encoding gene. GALNS leads to the lysosomal degradation of the glycosaminoglyccreasans keratan sulfate and chondroitin 6-sulfate. Impaired GALNS enzymes result in skeletal and non-skeletal complications in patients. For years, the MPS IVA pathogenesis and the assessment of promising drugs have been evaluated using in vitro (primarily fibroblasts) and in vivo (mainly mouse) models. Even though value information has been raised from those studies, these models have several limitations. For instance, chondrocytes have been well recognized as primary cells affected in MPS IVA and responsible for displaying bone development impairment in MPS IVA patients; nonetheless, only a few investigations have used those cells to evaluate basic and applied concepts. Likewise, current animal models are extensively represented by mice lacking GALNS expression; however, it is well known that MPS IVA mice do not recapitulate the skeletal dysplasia observed in humans, making some comparisons difficult. This manuscript reviews the current in vitro and in vivo MPS IVA models and their drawbacks.


Asunto(s)
Condroitinsulfatasas , Mucopolisacaridosis IV , Humanos , Ratones , Animales , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Condroitinsulfatasas/genética
5.
Mol Genet Metab ; 140(3): 107648, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37598508

RESUMEN

Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.


Asunto(s)
Barrera Hematoencefálica , Enfermedades por Almacenamiento Lisosomal , Humanos , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/terapia , Sistema Nervioso Central , Terapia Genética/métodos
6.
Vaccines (Basel) ; 11(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37514988

RESUMEN

Infectious bovine rhinotracheitis (IBR) and bovine meningoencephalitis are caused by Bovine alphaherpesvirus (BoHV) types 1 and 5, which seriously threaten the global cattle industry. Vaccination to improve immunity is the most direct and effective means to prevent these conditions. Glycoprotein B (gB) is essential for the attachment of both viruses to permissive cells, and is a major target of the host immune system, inducing a strong humoral response. The aim of this study was to evaluate, in a murine model, the immune response of a candidate vaccine formulation composed of a chimeric BoHV-1 and BoHV-5 gB (DgB), expressed in Komagataella phaffii. The chimeric DgB vaccine adjuvanted with Montanide 50 ISA V2 or aluminum hydroxide was administered intramuscularly or subcutaneously. A control group and a group that received a commercial vaccine were inoculated subcutaneously. Higher titers of neutralizing antibodies against BoHV-1, BoHV-5, and a natural BoHV-1/5 recombinant strain were obtained with the oil-based candidate vaccine formulation administered intramuscularly. The results demonstrated that the chimeric DgB conserved important epitopes that were able to stimulate a humoral immune response capable of neutralizing BoHV-1, BoHV-5, and the recombinant strain, suggesting that the vaccine antigen is a promising candidate to be further evaluated in cattle.

7.
Mol Genet Metab ; 138(1): 106968, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525790

RESUMEN

Since its discovery as a genome editing tool, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system has opened new horizons in the diagnosis, research, and treatment of genetic diseases. CRISPR/Cas9 can rewrite the genome at any region with outstanding precision to modify it and further instructions for gene expression. Inborn Errors of Metabolism (IEM) are a group of more than 1500 diseases produced by mutations in genes encoding for proteins that participate in metabolic pathways. IEM involves small molecules, energetic deficits, or complex molecules diseases, which may be susceptible to be treated with this novel tool. In recent years, potential therapeutic approaches have been attempted, and new models have been developed using CRISPR/Cas9. In this review, we summarize the most relevant findings in the scientific literature about the implementation of CRISPR/Cas9 in IEM and discuss the future use of CRISPR/Cas9 to modify epigenetic markers, which seem to play a critical role in the context of IEM. The current delivery strategies of CRISPR/Cas9 are also discussed.


Asunto(s)
Sistemas CRISPR-Cas , Terapia Genética , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo
8.
Gene Ther ; 30(1-2): 107-114, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35581402

RESUMEN

Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder (LSD) caused by mutations in gene encoding for GALNS enzyme. Lack of GALNS activity leads to the accumulation of glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate. Although enzyme replacement therapy has been approved since 2014 for MPS IVA, still there is an unmet medical need to have improved therapies for this disorder. CRISPR/Cas9-based gene therapy has been tested for several LSDs with encouraging findings, but to date it has not been assayed on MPS IVA. In this work, we validated for the first time the use of CRISPR/Cas9, using a Cas9 nickase, for the knock-in of an expression cassette containing GALNS cDNA in an in vitro model of MPS IVA. The results showed the successful homologous recombination of the expression cassette into the AAVS1 locus, as well as a long-term increase in GALNS activity reaching up to 40% of wild-type levels. We also observed normalization of lysosomal mass, total GAGs, and oxidative stress, which are some of the major findings regarding the pathophysiological events in MPS IVA. These results represent a proof-of-concept of the use of CRISPR/Cas9 nickase strategy for the development of a novel therapeutic alternative for MPS IVA.


Asunto(s)
Condroitinsulfatasas , Mucopolisacaridosis IV , Humanos , Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/terapia , Sistemas CRISPR-Cas , Edición Génica , Condroitinsulfatasas/genética , Condroitinsulfatasas/metabolismo , Condroitinsulfatasas/uso terapéutico , Sulfato de Queratano/metabolismo , Sulfato de Queratano/uso terapéutico , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo
9.
Sci Rep ; 12(1): 15045, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057729

RESUMEN

Mucopolysaccharidosis IV A (MPS IVA) is a lysosomal disorder caused by mutations in the GALNS gene. Consequently, the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate accumulate in the lysosomal lumen. Although enzyme replacement therapy has shown essential advantages for the patients, several challenges remain to overcome, such as the limited impact on the bone lesion and recovery of oxidative profile. Recently, we validated a CRISPR/nCas9-based gene therapy with promising results in an in vitro MPS IVA model. In this study, we have expanded the use of this CRISPR/nCas9 system to several MPS IVA fibroblasts carrying different GALNS mutations. Considering the latent need to develop more safety vectors for gene therapy, we co-delivered the CRISPR/nCas9 system with a novel non-viral vector based on magnetoliposomes (MLPs). We found that the CRISPR/nCas9 treatment led to an increase in enzyme activity between 5 and 88% of wild-type levels, as well as a reduction in GAGs accumulation, lysosomal mass, and mitochondrial-dependent oxidative stress, in a mutation-dependent manner. Noteworthy, MLPs allowed to obtain similar results to those observed with the conventional transfection agent lipofectamine. Overall, these results confirmed the potential of CRISPR/nCas9 as a genome editing tool for treating MPS IVA. We also demonstrated the potential use of MLPs as a novel delivery system for CRISPR/nCas9-based therapies.


Asunto(s)
Condroitinsulfatasas , Mucopolisacaridosis , Mucopolisacaridosis IV , Nanopartículas , Condroitinsulfatasas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Óxido Ferrosoférrico/uso terapéutico , Edición Génica , Glicosaminoglicanos , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis/terapia , Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/terapia
10.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142595

RESUMEN

The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Desoxirribonucleasa I/metabolismo , Fibroblastos/metabolismo , Proteína Activadora de G (M2) , Gangliósido G(M2)/genética , Gangliósido G(M2)/metabolismo , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Gangliosidosis GM2/terapia , Edición Génica , Globósidos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , beta-N-Acetilhexosaminidasas/metabolismo
11.
Adv Biol Regul ; 85: 100900, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35870382

RESUMEN

Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.


Asunto(s)
Esfingolipidosis , Esfingolípidos , Sistema Nervioso Central/metabolismo , Humanos , Metabolismo de los Lípidos , Esfingolipidosis/metabolismo , Esfingolípidos/metabolismo
12.
EJIFCC ; 33(1): 28-42, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35645695

RESUMEN

Lysosomal storage disorders (LSDs) are a group of rare and genetic diseases produced by mutations in genes coding for proteins involved in lysosome functioning. Protein defect leads to the lysosomal accumulation of undegraded macromolecules including glycoproteins, glycosaminoglycans, lipids, and glycogen. Depending on the stored substrate, several pathogenic cascades may be activated leading to multisystemic and progressive disorders affecting the brain, eye, ear, lungs, heart, liver, spleen, kidney, skin, or bone. In addition, for some of these disorders, hematological findings have been also reported. In this paper, we review the major hematological alterations in LSDs based on 56 case reports published between 2010 and 2020. Hematological alterations were reported in sphingolipidosis, mucopolysaccharidoses, mucolipidoses, neuronal ceroid lipofuscinosis, glycogenosis, glycoproteinosis, cystinosis, and cholesteryl ester storage disease. They were reported alterations in red cell linage and leukocytes, such as anemia and morphology changes in eosinophils, neutrophils, monocytes, and lymphocytes. In addition, changes in platelet counts (thrombocytopenia) and leukocyte abnormalities on non-peripheral blood samples were also reported for some LSDs. Although in most of the cases these hematological alterations are not pathognomonic of a specific disease or group of LSDs, since they can be easily identified in general clinical laboratories, their identification may contribute to the diagnosis of these disorders. In this sense, we hope that this review contributes to the awareness of the importance of hematological alterations in the diagnosis of LSDs.

13.
Heliyon ; 8(3): e09031, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284671

RESUMEN

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive disease caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), which activates intracellular accumulation of nonmetabolized glycosaminoglycans such as heparan sulfate and dermatan sulfate. This accumulation causes severe damage to several tissues, principally the central nervous system. Previously, we identified 187 IDS-protein interactions in the mouse brain. To validate a subset of these interactions, we selected and cloned the coding regions of 10 candidate genes to perform a targeted yeast two-hybrid assay. The results allowed the identification of the physical interaction of IDS with LSAMP and SYT1. Although the physiological relevance of these complexes is unknown, recent advances allow us to point out that these interactions could be involved in vesicular trafficking of IDS through the interaction with SYT1, as well as to the ability to form a transcytosis module between the cellular components of the blood-brain-barrier (BBB) through its interaction with LSAMP. These results may shed light on the role of IDS on cellular homeostasis and may also contribute to the understanding of MPS II physiopathology and the development of novel therapeutic strategies to transport recombinant IDS through the brain endothelial cells toward the brain parenchyma.

14.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613919

RESUMEN

Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucopolisacaridosis , Humanos , Glicosaminoglicanos/uso terapéutico , Mucopolisacaridosis/genética , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Lisosomas , Terapia de Reemplazo Enzimático
15.
Cryobiology ; 105: 32-40, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34951975

RESUMEN

The methylotrophic yeast Komagataella phaffii, previously known as Pichia pastoris, has been reported as a host for producing human recombinant lysosomal enzymes intended for enzyme replacement therapy. K. phaffii has advantages such as easy genetic handling, rapid growth, cost-effective mediums, and the ability to develop mammalian-like post-translational modifications. To maintain cell viability and enzyme activity over time, it is important to consider the bioprocess optimization and the proper selection and preservation of clones. In this study, we evaluated the effect of glycerol and skim milk in cryopreservation at -80 °C, as well as the use of skim milk or its combination with NaCl, disaccharides or sorbitol in freeze-drying on the cell viability and activity of a recombinant lysosomal enzyme (i.e., human ß-hexosaminidase-A) produced in K. phaffii GS115 strain. The results showed that cryopreservation with glycerol and skim milk, as well as freeze-drying using disaccharides and sorbitol with skim milk, maintained the viability above 80%. Although variations in enzyme activity among treatments were found, the use of disaccharides had a positive effect on the enzymatic activity levels. This is the first report of the evaluation of two suitable methods to preserve a recombinant K. phaffii strain, preventing the loss of viability and maintaining the activity of the recombinant protein.


Asunto(s)
Criopreservación , Glicerol , Criopreservación/métodos , Disacáridos , Glicerol/farmacología , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomycetales , Sorbitol/farmacología
16.
Apoptosis ; 25(11-12): 875-888, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33156457

RESUMEN

P2Et extract obtained from the Caesalpinia spinosa plant is abundant in phenolic compounds such as gallic acid and ethyl gallate and can generate signals to activate the immune response by inducing a mechanism known as immunogenic cell death in murine models of breast cancer and melanoma. Immunogenic cell death involves mechanisms such as autophagy, which can be modulated by various natural compounds, including phenolic compounds with a structure similar to those found in P2Et extract. Here, we determine the role of autophagy in apoptosis and the generation of immunogenic signals using murine wild-type B16-F10 melanoma cells and cells with beclin-1 gene knockout. We show that P2Et extract and ethyl gallate induced autophagy, partially protecting tumor cells from death and promoting calreticulin exposure and the release of ATP. Although ethyl gallate showed a mechanism similar to that of P2Et, the induction of apoptosis and immunogenic signals was significantly weaker. In contrast, gallic acid-induced autophagy acted by blocking autophagic flux, which was associated with increased cell death. However, this compound did not induce any of the immunogenic death signals evaluated. Therefore, the complex extract has greater antitumor potential than isolated compounds. Here, we show that inducing autophagic flux with P2Et protects cancer cells from cell death and that this delay in cell death is required for the generation of immunogenic signals.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Beclina-1/genética , Caesalpinia/química , Línea Celular Tumoral , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
17.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867370

RESUMEN

GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the ß-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.


Asunto(s)
Proteína Activadora de G (M2)/genética , Gangliosidosis GM2/patología , beta-N-Acetilhexosaminidasas/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapéutico , Barrera Hematoencefálica , Ensayos Clínicos como Asunto , Dieta Cetogénica , Gangliósido G(M2)/metabolismo , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Gangliosidosis GM2/terapia , Terapia Genética , Humanos , Mutación , Pirimetamina/uso terapéutico , Trasplante de Células Madre
18.
J Mol Med (Berl) ; 98(7): 931-946, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32529345

RESUMEN

Lysosomal storage disorders (LSDs) are a group of monogenic diseases characterized by progressive accumulation of undegraded substrates into the lysosome, due to mutations in genes that encode for proteins involved in normal lysosomal function. In recent years, several approaches have been explored to find effective and successful therapies, including enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, hematopoietic stem cell transplantation, and gene therapy. In the case of gene therapy, genome editing technologies have opened new horizons to accelerate the development of novel treatment alternatives for LSD patients. In this review, we discuss the current therapies for this group of disorders and present a detailed description of major genome editing technologies, as well as the most recent advances in the treatment of LSDs. We will further highlight the challenges and current bioethical debates of genome editing.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/genética , Lisosomas/genética , Animales , Edición Génica/métodos , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Proteínas/genética
19.
Gene ; 634: 53-61, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28882567

RESUMEN

Maturation of type I sulfatases requires the conversion of the cysteine (Cys) or serine (Ser) present in the active site to formylglycine (FGly). This activation represents a limiting step during the production of recombinant sulfatases in bacteria and eukaryotic hosts. AslB, YdeM and YidF have been proposed to participate in the activation of sulfatases in Escherichia coli. In this study, we combined in-silico and experimental approaches to study the interaction between Escherichia coli BL21(DE3) AslB and human sulfatases, more specifically iduronate-2-sulfate sulfatase (IDS) and N-acetylgalactosamine-6-sulfate sulfatase (GALNS). In-silico results show that AslB has a higher affinity for the residual motif of GALNS (-9.4kcalmol-1), Cys- and Ser-type, than for the one of IDS (-8.0kcalmol-1). However, the distance between the AslB active residue and the target motif favors the interaction with IDS (4.4Å) more than with GALNS (5.5Å). Experimental observations supported in-silico results where the co-expression of AslB with GALNS Cys- and Ser-type presented an activity increment of 2.0- and 1.5-fold compared to the control cultures, lacking overexpressed AslB. Similarly, IDS activity was increased in 4.6-fold when co-expressed with AslB. The higher sulfatase activity of AslB-IDS suggests that the distance between the AslB active residue and the motif target is a key parameter for the in-silico search of potential sulfatase activators. In conclusion, our results suggest that AslB is involve in the maturation of heterologous human sulfatases in E. coli BL21(DE3), and that it can have important implications in the production of recombinant sulfatases for therapeutic purposes and research.


Asunto(s)
Condroitinsulfatasas/metabolismo , Escherichia coli/enzimología , Glicoproteínas/metabolismo , Sulfatasas/química , Sulfatasas/metabolismo , Dominio Catalítico , Condroitinsulfatasas/química , Cisteína/metabolismo , Activación Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Recombinantes/metabolismo , Serina/metabolismo
20.
Eur J Pharm Sci ; 109: 48-55, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768147

RESUMEN

Phenylketonuria (PKU) is an autosomal recessive disorder caused by a defective phenylalanine hydroxylase (PAH), which catalyzes the hydroxylation of l-phenylalanine (l-Phe) to l-tyrosine (l-Tyr) in presence of the cofactor tetrahydrobiopterin (BH4). Defective PAH causes accumulation of phenylalanine, which has neurotoxic effects and leads to dermatological, behavioral, and neurocognitive problems. Treatments for this disease consist in life-long diets that are hard for patients to keep, or supplementation with BH4. In this study, we propose a system where a probiotic lactic acid bacteria (LAB) can be used as vehicle to express in situ an engineered human PAH. Engineered PAHs contain a secretion peptide, a gastrointestinal signal (GI), the human PAH, and a flexible glycine linker followed by the fluorescence protein mEGFP. Engineered constructs were successfully transformed, expressed, and secreted in Lactobacillus plantarum CM_PUJ411. PAH construct containing either the signal peptide GI1 or GI2 were transported through a Caco-2 cell monolayer. Nevertheless, the one containing GI1 allowed the highest transport through the cell monolayer. Co-culture of L. plantarum and Caco-2 cells showed that engineered PAH is produced in-situ and transported through the cell monolayer. Finally, the activity test showed that the engineered PAH secreted by L. plantarum CM_PUJ411 is active, leading to a reduction in l-Phe and an increase in l-Tyr levels, respectively. These results show the potential of this system as a new therapeutic alternative for the treatment of PKU patients.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lactobacillus plantarum/metabolismo , Fenilalanina Hidroxilasa/biosíntesis , Probióticos/administración & dosificación , Células CACO-2 , Tracto Gastrointestinal/metabolismo , Humanos , Lactobacillus plantarum/genética , Fenilalanina Hidroxilasa/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA