RESUMEN
The most severe type of male infertility is nonobstructive azoospermia (NOA), where there is no sperm in the ejaculate due to failure of spermatogenesis. The predictable frequency of NOA in the general population is one in 100 men. Genetic studies have recognized dozens of NOA genes. Most NOA aetiologies remain idiopathic. Monogenic mutations can be a reason for a part of idiopathic NOA cases. To address this, we studied the pedigree of a consanguineous family with three NOAs by a family-based exome sequencing. Our goal was to pinpoint the genetic variants responsible for idiopathic NOA to aid future clinical genetic diagnostics and treatment strategies. Bioinformatics analysis followed by Sanger sequencing revealed that NOA patients were homozygous for a rare novel missense variant in PNLDC1(NM_173516:exon9:c.710G>A;p.Gly237Asp). In silico, single-cell RNA sequencing data analysis and protein modelling demonstrated that PNLDC1, Gly237Asp resided in the conserved region of the CAF1 domain which could lead to local instability in the structure and alteration of protein phosphorylation site. We conclude that the novel missense PNLDC1 variant may affect meiosis and spermatogenesis, leading to NOA and the genetic cause of this idiopathic NOA family. Our result helps genetic counselling for idiopathic NOA cases and provides the occasion for more efficient diagnosis in the clinical setting.
Asunto(s)
Azoospermia , Mutación Missense , Linaje , Humanos , Masculino , Azoospermia/genética , Azoospermia/patología , Secuenciación del Exoma , Adulto , Espermatogénesis/genéticaRESUMEN
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.
Asunto(s)
Trastorno del Espectro Autista , Quinasas DyrK , Mosaicismo , Linaje , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Secuenciación Completa del Genoma , Humanos , Proteínas Serina-Treonina Quinasas/genética , Trastorno del Espectro Autista/genética , Masculino , Proteínas Tirosina Quinasas/genética , Femenino , Niño , Secuenciación Completa del Genoma/métodos , Empalme del ARN , Adolescente , Preescolar , Polimorfismo de Nucleótido Simple , Predisposición Genética a la EnfermedadRESUMEN
OBJECTIVE: The most severe type of male infertility is non-obstructive azoospermia (NOA), where there is no sperm in the ejaculate due to failure of spermatogenesis, affecting 10%-20% of infertile men with azoospermia. Genetic studies have identified dozens of NOA genes. The main aim of the present study is to identify a novel monogenic mutation that may cause NOA. MATERIALS AND METHODS: We studied the pedigree of a consanguineous family with three NOA and one fertile brother by a family-based exome-sequencing, segregation analysis, insilico protein modeling and single-cell RNA sequencing data analysis. RESULTS: Bioinformatics analysis followed by sanger sequencing revealed that three NOA brothers were homozygous for a rare missense variant in Cyclin Dependent Kinase Regulatory Subunit Associated Protein 2 (Centrosomin) CDK5RAP2 (NM_018249:exon26:c.A4003T:p.R1335W, rs761196443). Protein modeling demonstrated that CDK5RAP2, Arg1335Trp resided nearby the Microtubule Associated Protein RP/EB Family Member 1 (EB1/MAPRE1) interaction site. As a consequence of the R1335W mutation, the positively charged Arginine was replaced by to the hydrophobic tryptophan residue, possibly leading to local instability in the structure and perturbation in the CDK5RAP2-MAPRE1 interaction. CONCLUSION: Our study reports a novel missense variant of CDK5RAP2 that segregates in homozygosity with male infertility and NOA in a consanguineous family. In silico structural predictions and gene expression data indicate a potential role of the CDK5RAP2 variant in causing defective centrosomic maturation during spermatogenesis.
Asunto(s)
Azoospermia , Infertilidad Masculina , Humanos , Masculino , Azoospermia/genética , Azoospermia/complicaciones , Infertilidad Masculina/genética , Mutación , Mutación Missense , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular/genéticaRESUMEN
BACKGROUND: Mutations in ABHD12 (OMIM: 613,599) are associated with polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) syndrome (OMIM: 612674), which is a rare autosomal recessive neurodegenerative disease. PHARC syndrome is easily misdiagnosed as other neurologic disorders, such as retinitis pigmentosa, Charcot-Marie-Tooth disease, and Refsum disease, due to phenotype variability and slow progression. This paper presents a novel mutation in ABHD12 in two affected siblings with PHARC syndrome phenotypes. In addition, we summarize genotype-phenotype information of the previously reported patients with ABHD12 mutation. METHODS: Following a thorough medical evaluation, whole-exome sequencing was done on the proband to look for potential genetic causes. This was followed by confirmation of identified variant in the proband and segregation analysis in the family by Sanger sequencing. The variants were interpreted based on the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A novel pathogenic homozygous frameshift variant, NM_001042472.3:c.601dup, p.(Val201GlyfsTer4), was identified in exon 6 of ABHD12 (ACMG criteria: PVS1 and PM2, PM1, PM4, PP3, and PP4). Through Sanger sequencing, we showed that this variant is co-segregated with the disease in the family. Further medical evaluations confirmed the compatibility of the patients' phenotype with PHARC syndrome. CONCLUSIONS: Our findings expand the spectrum of mutations in the ABHD12 and emphasize the significance of multidisciplinary diagnostic collaboration among clinicians and geneticists to solve the differential diagnosis of related disorders. Moreover, a summary based on mutations found so far in the ABHD12 gene did not suggest a clear genotype-phenotype correlation for PHARC syndrome.
Asunto(s)
Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Humanos , Mutación del Sistema de Lectura , Retinitis Pigmentosa/genética , Mutación , Fenotipo , Linaje , Monoacilglicerol Lipasas/genéticaRESUMEN
Ring chromosomes are the result of breakage and re-union of distal ends of chromosomal arms. They have a general frequency of 1 in 50,000 and 1 in 58,000 for chromosome 13. Ring chromosome 13 is usually presented as a syndromic situation stigmatized by particular features, including developmental delay, mental retardation and CNS, skeletal or organ anomalies. As an experimental study, here we report a 31 years old male with no major phenotypic manifestation who was evaluated for azoospermia, while his karyotype revealed presence of a mosaic ring chromosome 13. He had a history of bilateral varicocelectomy and no other major finding in his routine infertility work up was determined. Genetic counseling did not provide any clue for mental disability or dysmorphic features. Pathology examination of the testicular tissue revealed very scarce number of spermatid/spermatozoa within the tubules in conjunction with degrees of maturation arrest mostly in spermatocyte stage. In our knowledge, this is the first report of a ring chromosome 13, manifested by an isolated male infertility.
RESUMEN
Uterine leiomyomas (ULs) are benign solid tumors arising from the uterine myometrium. They are the most common pelvic tumors among females of reproductive age. Despite the universal prevalence of ULs and its huge impact on women's lives, the exact etiology and pathophysiologic mechanisms have not been fully understood. Numerous studies indicate that genetic factors play a crucial role in ULs development. This study aims to identify the probable genetic causes of ULs in a consanguineous Iranian family. Whole-exome sequencing (WES) on five family members with ULs revealed a likely pathogenic missense variant encoding for Y88C in the transactivation (TA) domain of DLX3 gene (c.263A > G; p.Y88C). Sanger sequencing of a total of 9 affected and non-affected family members indicated a segregation with disease with autosomal dominant inheritance. Moreover, targeted Sanger sequencing on 32 additional non-related patients with ULs showed none was heterozygous for this variant. MutPred2 predicted the pathogenicity of candidate variant by both phosphorylation and sulfation loss as actionable hypotheses. Project HOPE revealed that the identified variant residue is smaller and more hydrophobic comparing to the wild-type residue. I-TASSER and UCSF Chimera were also used for modeling and visualizing the predicted variant, respectively. This WES analysis is the first to report a variant in DLX3 variation associated with ULs pathogenicity in Iranian population highlighting the effectiveness of WES as a strong diagnostic method. However, further functional studies on this variant are needed to confirm the potential pathogenicity of this mutation.
Asunto(s)
Aborto Espontáneo , Leiomioma , Femenino , Humanos , Embarazo , Consanguinidad , Irán , Leiomioma/genética , Mutación , Mutación Missense , LinajeRESUMEN
BACKGROUND: DNA-directed RNA polymerase II subunit 3 (RPB3) is the third largest subunit of RNA polymerase II and is encoded by the POLR2C (OMIM:180663). A large Iranian family with congenital hearing loss and infertility is described here with genetic and clinical characterizations of five male patients. METHODS: After doing clinical examinations, the proband was subjected to karyotyping and GJB2/6 sequencing to rule out the most evident chromosomal and gene abnormalities for male infertility and hearing loss, respectively. A custom-designed next-generation sequencing panel was also used to detect mutations in deafness-related genes. Finally, to reveal the underlying molecular cause(s) justifying hearing loss and male infertility, five male patients and 2 healthy male controls within the family were subjected to paired-end whole-exome sequencing (WES). Linkage analysis was also performed based on the data. RESULTS: All male patients showed prelingual sensorineural hearing loss and also decreased sperm motility. Linkage analysis determined 16q21 as the most susceptible locus in which a missense variant in exon 7 of POLR2C-NM_032940.3:c.545T>C;p.(Val182Ala)-was identified as a 'likely pathogenic' variant co-segregated with phenotypes. CONCLUSIONS: Using segregation and in silico analyses, for the first time, we suggested that the NM_032940.3:c.545T>C; p.(Val182Ala) in POLR2C is associated with hearing loss and male infertility.
Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Infertilidad Masculina , Humanos , Masculino , Irán , Motilidad Espermática , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Sordera/genética , Pérdida Auditiva/genética , Mutación , LinajeRESUMEN
Hearing Loss (HL) is one of the most prevalent congenital diseases in humans and is etiologically highly heterogeneous. To date, over 360 genes have been identified that are involved in mouse or human deafness. SPNS2 is one of these genes that has been attributed to deafness in recent years. In this study, we identified two novel damaging variants of c.906G>A; p.(Trp302*) and c.487G>A; p.(Asp163Asn) in the SPNS2 gene in an eight-year-old female with bilateral sensorineural hearing loss who also presents with congenital hypothyroidism and coronary heart disease. Sanger sequencing confirmed that the variants are compound heterozygote. In addition, in silico analysis by various tools predicted that these variants are damaging. To date, these detected variants have not been reported in any of the existing public databases. We hope that identification of more variants in SPNS2 provide new insights into its role in deafness.
Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Femenino , Humanos , Animales , Ratones , Niño , Sordera/genética , Mutación , Linaje , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Heterocigoto , Proteínas de Transporte de Anión/genéticaRESUMEN
OBJECTIVE: Hydatidiform mole (HM) is defined by trophoblastic proliferation and vesicular enlargement of placental villi in which, KHDC3L gene plays a causal role. CASE REPORT: This report presents a clinical review and genetic screening for p.Asp108Ilefs∗30 mutation in KHDC3L gene in an affected woman with a previous history of HM and three siblings with a history of HM. Pathological examination of molar pregnancy in proband confirmed a typical complete HM (CHM). Also, DNA extraction was done, polymerase chain reaction was carried out and then sequencing was performed by the Sanger sequencing method. The screened mutation was found in all three sisters in a homozygous state. CONCLUSION: Egg donation is suggested for having viable children in these patients with the lowest risk of inadvertent damage.
Asunto(s)
Mola Hidatiforme , Neoplasias Uterinas , Femenino , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/patología , Mutación , Recurrencia Local de Neoplasia , Placenta/patología , Embarazo , Proteínas/genética , Neoplasias Uterinas/complicaciones , Neoplasias Uterinas/genéticaRESUMEN
Proper assembly of the synaptonemal complex is essential for successful meiosis, and impairments in the process lead to infertility. Meiotic transverse filament proteins encoded by the SYCP1 (synaptonemal complex protein 1) gene are one of the main components of the synaptonemal complex and play an important role in correct synapsis and recombination. Family-based whole-exome sequencing revealed a rare homozygous SYCP1 frameshift mutation (c.2892delA: p.K967Nfs*1) in two men with severe oligozoospermia, followed by validation and segregation through Sanger sequencing. This single nucleotide deletion not only changes lysine 967 (K) into asparagine (N) but also causes a premature stop codon, which leads to deletion of 968-976 residues from the end of the C-tail region of the SYCP1 protein. Although, sycp1 knockout male mice are reported to be sterile with a complete lack of spermatids and spermatozoa, to date no SYCP1 variant has been associated with human oligozoospermia. HADDOCK analysis indicated that this mutation decreases the ability of the truncated SYCP1 protein to bind DNA. Immunodetection of ÏH2AX signals in SYCP1 mutant semen cells, and a 40% DNA fragmentation index might indicate that a small number of DNA double-strand breaks, which require SYCP1 and/or synapsis to be repaired, are not efficiently repaired, resulting in defects in differentiation of germline cells and appearance of the oligozoospermia phenotype. To our knowledge, this is the first report of a homozygous SYCP1 mutation that decreases sperm count. Further studies are required to determine the function of the SYCP1 mutation, which is potentially associated with human oligozoospermia.
Asunto(s)
Infertilidad Masculina , Oligospermia , Animales , Proteínas de Unión al ADN/genética , Mutación del Sistema de Lectura , Humanos , Infertilidad Masculina/genética , Masculino , Meiosis , Ratones , Proteínas Nucleares/genética , Oligospermia/genética , Complejo Sinaptonémico/metabolismoRESUMEN
Non-obstructive azoospermia (NOA) and primary ovarian insufficiency (POI) present the most severe forms of male and female infertility. In the last decade, the increasing use of whole exome sequencing (WES) in genomics studies of these conditions has led to the introduction of a number of novel genes and variants especially in meiotic genes with restricted expression to gonads. In this study, exome sequencing of a consanguineous Iranian family with one POI and two NOA cases in three siblings showed that all three patients were double homozygous for a novel in-frame deletion and a novel missense variant in STAG3 (NM_001282717.1:c.1942G > A: p.Ala648Thr; NM_001282717.1:c.1951_1953del: p. Leu652del). Both variants occur within a short proximity of each other affecting the relatively conserved armadillo-type fold superfamily feature. STAG3 is a specific meiotic cohesin complex component that interacts with the α-kleisin subunit through this feature. Protein homology modeling indicated that the in-frame deletion destabilizes kleisin biding by STAG3. Although the missense variant did not seem to affect the binding significantly, protein homology modeling suggests that it further destabilizes kleisin binding when in double homozygous state with the deletion. Our findings are in line with several other studies having associated deleterious variants affecting this region with male and female infertility in humans and mouse models. This is the first report associating an in-frame STAG3 variant with NOA and POI in a single family. SUMMARY SENTENCE: A patient with primary ovarian failure and her two brothers with non-obstructive azoospermia were double homozygous for a novel in-frame deletion and a novel missense variant in STAG3 that potentially disrupt the protein's meiotic functions.
Asunto(s)
Azoospermia/genética , Secuenciación del Exoma/métodos , Insuficiencia Ovárica Primaria/genética , Factor de Transcripción STAT3/genética , Adulto , Sitios de Unión , Consanguinidad , Femenino , Estudios de Asociación Genética , Humanos , Irán , Masculino , Modelos Moleculares , Mutación Missense , Linaje , Conformación Proteica , Factor de Transcripción STAT3/química , Eliminación de SecuenciaRESUMEN
BACKGROUND: 3MC syndrome type 3 is an autosomal recessive disorder caused by mutations in the COLEC10 gene besides other genes like COLEC11 and MASP1. This disorder is characterized by facial dysmorphism, cleft lip and palate, postnatal growth deficiency, cognitive impairment, hearing loss, craniosynostosis, radioulnar synostosis, genital and vesicorenal anomalies, cardiac anomalies, caudal appendage, and umbilical hernia. METHODS: In the present study, whole-exome sequencing was performed in order to identify disease causing variant in an Iranian 7-year-old affected girl with craniosynostosis, dolichocephaly, blepharoptosis, clinodactyly of the 5th finger, high myopia, long face, micrognathia, patent ductus arteriosus, downslanted palpebral fissures, telecanthus, and epicanthus inversus. Identified variant confirmation in the patient and segregation analysis in her family were performed using Sanger sequencing method. RESULTS: A novel homozygous frameshift deletion variant [NM_006438.5: c.128_129delCA; p.(Thr43AsnfsTer9)] was identified within the COLEC10 gene. Up to now, only three 3MC syndrome patients with mutations in the COLEC10 gene have been reported, and here, we report the fourth patient and the first homozygous frameshift variant. CONCLUSION: Other genes and factors responsible for 3MC syndrome occurrence are remained to be discovered. We believe further investigation of the genes in the lectin complement pathway is needed to be done for the identification of other causes of this disease.
Asunto(s)
Labio Leporino , Fisura del Paladar , Niño , Labio Leporino/genética , Fisura del Paladar/genética , Colectinas/genética , Colectinas/metabolismo , Femenino , Humanos , Irán , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Secuenciación del ExomaRESUMEN
Background: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of Cleidocranial dysplasia (CCD), which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challenging, which leaves it underdiagnosed. Methods: : In this study, nine healthy and affected members of an Iranian family were investigated. PCR and sequencing of all exons and exon-intron boundaries of runt-related transcription factor 2 (RUNX2; NM_001024630) gene was performed on proband. Co-segregation analysis was conducted in the other family members for the identified variant. Additionally, a cohort of 100 Iranian ethnicity-matched healthy controls was screened by Amplification Refractory Mutation System PCR method. Results: The novel splice site variant (c.860-2A>G), which was identified in the intron 6 of RUNX2 gene, co-segregated with the disease in the family, and it was absent in healthy controls. Pathogenicity of this variant was determined by several software, including , human splicing finder, which predicts the formation or disruption of splice donor sites, splice acceptor sites, exonic splicing silencer sites, and exonic splicing enhancer sites. In silico analysis predicted this novel variant to be disease causing. Conclusion: The identified variant is predicted to have an effect on splicing, which leads to exon skipping and producing a truncated protein via introducing a premature stop codon.
Asunto(s)
Displasia Cleidocraneal/diagnóstico por imagen , Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Variación Genética/genética , Mutación/genética , Femenino , Humanos , Masculino , LinajeRESUMEN
BACKGROUND: Ca2+ as a universal second messenger regulates basic biological functions including cell cycle, cell proliferation, cell differentiation, and cell death. Lack of the protein mitochondrial calcium uptake1 (MICU1), which has been regarded as a gatekeeper of Ca ions, leads to the abnormal mitochondrial Ca2+ handling, excessive production of reactive oxygen species (ROS), and increased cell death. Mutations in MICU1 gene causes a very rare neuromuscular disease, myopathy with extrapyramidal signs (MPXPS), due to primary alterations in mitochondrial calcium signaling which demonstrates the key role of mitochondrial Ca2+ uptake. To date, 13 variants have been reported in MICU1 gene in 44 patients presented with the vast spectrum of symptoms. CASE PRESENTATION: Here, we report a 44-year-old Iranian patient presented with learning disability, muscle weakness, easy fatigability, reduced tendon reflexes, ataxia, gait disturbance, elevated hepatic transaminases, elevated serum creatine kinase (CK), and elevated lactate dehydrogenase (LDH). We identified a novel nonsense variant c.385C>T; p.(R129*) in MICU1 gene by whole exome sequencing (WES) and segregation analysis. CONCLUSIONS: Our finding along with previous studies provides more evidence on the clinical presentation of the disease caused by pathogenic mutations in MICU1. Finding more variants and expanding the spectrum of the disease increases the diagnostic rate of molecular testing in screening of this kind of diseases and in turn improves the quality of counseling for at risk couples and helps them to minimize the risks of having affected children.
RESUMEN
Kabuki syndrome (KS) is a rare genetic disorder characterized by the following 5 crucial symptoms: dysmorphic facial features, growth retardation, skeletal abnormalities, intellectual disability, and dermatoglyphic malformations. Studies show that most of the KS cases are caused by mutations or large deletions in the KMT2D gene, while the other cases show mutations in KDM6A. We studied 2 patients with suspected KS in 2 unrelated families by whole-exome sequencing to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants and check the segregation in other members of the families. Finally, the potential effects of the variants on the structure and function of respective proteins were tested using in silico predictions. Both affected members of the families showed typical manifestations of KS including intellectual disability, developmental delay, and abnormal facial characteristics. A novel heterozygous frameshift variant in the KMT2D gene, c.4981del; p.(Glu1661Serfs*61), and a novel hemizygote missense variant in the KDM6A gene, c.3301G>A; p.(Glu1101Lys), were detected in patients 1 and 2, respectively. The frameshift variant identified in the first family was de novo, while in the second family, the mother was also heterozygous for the missense variant. The frameshift variant in KMT2D is predicted to lead to a truncated protein which is functionally impaired. The Glu1101 residue of KDM6A (UTX) affected in the second patient is located in a conserved region on the surface of the Jumonji domain and predicted to be causative. Our findings provide evidence on the possible pathogenicity of these 2 variants; however, additional functional studies are necessary to confirm their impacts.
RESUMEN
OBJECTIVE: Recurrent pregnancy loss (RPL) is a common infertility-related complication that affects approximately 1-3 % of women worldwide. Known causes of etiology are found in approximately half the cases but the other half remain unexplained. It is estimated that several thousands of genes contribute to reproductive success in mammals and the genetic causes of RPL cannot be fully addressed through targeted genetic tests. In recent years, massive parallel sequencing technologies has helped discovering many causal mutations in hereditary diseases such as RPL. STUDY DESIGN: Using whole-exome sequencing (WES), we studied a large multiplex consanguineous family with multiple cases of RPL and hydatidiform moles (HM). In addition, targeted Sanger sequencing was applied to 40 additional non-related individuals with RPL. RESULTS: The use of WES permitted to identify the pathogenic variant in KHDC3L (c.322_325delGACT) in related who experienced RPL with or without HM. Sanger sequencing confirmed the segregation of the mutation throughout the pedigree and permitted to establish this variant as the genetic cause responsible for RPL and HM in this family. CONCLUSION: KHDC3L is well established as a susceptibility gene for HM but we confirmed here that KHDC3L deleterious variants can also induce RPL. In addition, we observed a genotype-phenotype correlation, demonstrating that women with a truncating KHDC3L homozygous variant could not sustain a pregnancy and often had pregnancy losses mainly due to HM while those with the same heterozygous variant could have children but often endured RPL with no HM.
Asunto(s)
Aborto Habitual , Mola Hidatiforme , Aborto Habitual/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Niño , Femenino , Humanos , Mola Hidatiforme/genética , Mutación , Linaje , Embarazo , ProteínasRESUMEN
ATP8A2 is a P4-ATPase that flips phosphatidylserine across membranes to generate and maintain transmembrane phospholipid asymmetry. Loss-of-function variants cause severe neurodegenerative and developmental disorders. We have identified three ATP8A2 variants in unrelated Iranian families that cause intellectual disability, dystonia, below-average head circumference, mild optic atrophy, and developmental delay. Additionally, all the affected individuals displayed tooth abnormalities associated with defects in teeth development. Two variants (p.Asp825His and p.Met438Val) reside in critical functional domains of ATP8A2. These variants express at very low levels and lack ATPase activity. Inhibitor studies indicate that these variants are misfolded and degraded by the cellular proteasome. We conclude that Asp825, which coordinates with the Mg2+ ion within the ATP binding site, and Met438 are essential for the proper folding of ATP8A2 into a functional flippase. We also provide evidence on the association of tooth abnormalities with defects in ATP8A2, thereby expanding the clinical spectrum of the associated disease.
Asunto(s)
Adenosina Trifosfatasas , Fosfolípidos , Adenosina Trifosfatasas/química , Citoplasma/metabolismo , Humanos , Irán , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Dominios ProteicosRESUMEN
STUDY QUESTION: Can whole-exome sequencing (WES) reveal a shared pathogenic variant responsible for primary gonadal failure in both male and female patients from a consanguineous family? SUMMARY ANSWER: Patients with primary ovarian insufficiency (POI) and non-obstructive azoospermia (NOA) were homozygous for the rare missense variant p. S754L located in the highly conserved MSH4 MutS signature motif of the ATPase domain. An oligozoospermic patient was heterozygous for the variant. WHAT IS KNOWN ALREADY: MSH4 is a meiosis-specific protein expressed at a certain level in the testes and ovaries. Along with its heterodimer partner MSH5, it is responsible for double-strand Holliday junction recognition and stabilization, to ensure accurate chromosome segregation during meiosis. Knockout male and female mice for Msh4 and Msh5 are reportedly infertile due to meiotic arrest. In humans, MSH4 is associated with male and female gonadal failure, with distinct variations in the MutS domain V. STUDY DESIGN, SIZE, DURATION: This was a retrospective genetics study of a consanguineous family with multiple cases of gonadal failure in both genders. The subject family was recruited in Iran, in 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: The proband who is affected by POI, an NOA brother, a fertile sister and their parents were subjected to WES. The discovered variant was validated in these individuals, and the rest of the family was also genotyped by Sanger sequencing. The variant was not detected in 800 healthy Iranian individuals from the Iranome database nor in 30 sporadic NOA and 30 sporadic POI patients. Suggested effect in aberrant splicing was studied by RT-PCR. Moreover, protein homology modeling was used to further investigate the amino acid substitution in silico. MAIN RESULTS AND THE ROLE OF CHANCE: The discovered variant is very rare and has never been reported in the homozygous state. It occurs in the ATPase domain at Serine 754, the first residue within the highly conserved MutS signature motif, substituting it with a Leucine. All variant effect prediction tools indicated this variant as deleterious. Since the substitution occurs immediately before the Walker B motif at position 755, further investigations based on protein homology were conducted. Considering the modeling results, the nature of the substituted amino acid residue and the distances between p. S754L variation and the residues of the Walker B motif suggested the possibility of conformational changes affecting the ATPase activity of the protein. LARGE SCALE DATA: We have submitted dbSNP entry rs377712900 to ClinVar under SCV001169709, SCV001169708 and SCV001142647 for oligozoospermia, NOA and POI, respectively. LIMITATIONS, REASONS FOR CAUTION: Studies in model organisms can shed more light on the role of this variant as our results were obtained by variant effect prediction tools and protein homology modeling. WIDER IMPLICATIONS OF THE FINDINGS: Identification of variants in meiotic genes should improve genetic counseling for both male and female infertility. Also, as two of our NOA patients underwent testicular sperm extraction (TESE) with no success, ruling out the existence of pathogenic variants in meiotic genes in such patients prior to TESE could prove useful. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by Royan Institute in Tehran, Iran, and Institut Pasteur in Paris, France. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Asunto(s)
Trastornos del Desarrollo Sexual 46, XX/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Trastorno del Desarrollo Sexual 46,XY/genética , Animales , Femenino , Francia , Humanos , Irán , Masculino , Ratones , Ratones Noqueados , Paris , Estudios RetrospectivosRESUMEN
OBJECTIVE: In vitro fertilization (IVF) is one of the most efficient approaches within the context of assisted reproductive technology (ART) to treat infertility. High pregnancy rates have become the major index of successful IVF in clinical studies. It is not clear yet which factors are certainly responsible for IVF success, as various outcomes were obtained in different IVF centers with different settings. In this study, we aimed to address controversies in the interpretation of promising results of IVF with respect to preimplantation genetic screening (PGS). MATERIALS AND METHODS: In this retrospective case series study, we built a dataset containing data from 213 IVF patient candidates for PGS (654 embryos) with blastomere biopsy at day 3 and trophectoderm biopsy in day 5, referred to Royan Institute, Tehran, Iran from 2015 to 2018. Next, the data were analyzed to find influential factors affecting success rate of ART cycles. RESULTS: Data analyses showed that regardless of PGS indications (ART failures, recurrent miscarriage, chromosomal abnormalities, etc.), the pregnancy rate is influenced by maternal and embryonic factors such as the age of mother as well as quantity and quality of transferred embryos. Furthermore, genotyping of embryos using array comparative genomic hybridization (aCGH) depicted the highest rate of chromosomal aberrations for chromosomes 1, 16 and 19 while the lowest frequency for chromosomes 11 and 17. Similarly, we detected 463 genetically abnormal embryos by aCGH, among which only 41.9% could be detected by classical fluorescent in situ hybridization (FISH) method. CONCLUSION: This study not only highlighted the advantages of aCGH over the FISH method in detection of chromosomal abnormalities, but also emphasized the importance of genetic abnormality as an indication for determination of IVF success rate.