Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Healthcare (Basel) ; 11(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570357

RESUMEN

The current cross-sectional study was conducted to determine the quality of blood donation services and its association with blood donors' trust and loyalty at Makkah blood donation centers in Saudi Arabia. A total of 373 healthy blood donors aged ≥18 years who visited blood donation centers in Makkah, Saudi Arabia, between 1st and 28th February 2023 were recruited using a census sampling method. A pre-tested and validated Arabic language questionnaire was employed. The study survey included a checklist of sociodemographic variables (seven items), as well as seven-point Likert-scale questions on the quality of blood donation services (21 items), questions to assess the participant's level of trust in blood donation centers (4 items), and questions to evaluate the level of loyalty to blood donations (4 items). SPSS (version 24) was used for data analysis. A total of 373 blood donors were included in this study. Of them, 240 (64.3%) were males and 133 (35.7%) were females. The vast majority of the study participants, 330 (88.5%), had a high educational level. The overall average agreement score for the quality of blood donation services was 71.7%. Furthermore, the overall average item agreement score for trust in blood donation centers and places was 83.0%, while the overall average item agreement score for loyalty to blood donation was 72.1%. Moreover, after adjustment for potential confounding factors, high levels of quality in blood donation services were associated with high levels of trust and loyalty among the blood donors (OR: 1.518, CI 95%: 0.321-0.864 and OR: 2.466, CI 95%: 0.285-0.763, respectively) (p-value < 0.05 for all). The overall quality of, trust in, and loyalty to blood donation services were 71.7%, 83.0%, and 72.1%, respectively. In addition, high levels of quality in blood donation services could improve blood donors' trust and loyalty levels at Makkah blood donation centers in Saudi Arabia.

2.
Hum Mol Genet ; 32(4): 608-620, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36084040

RESUMEN

Mutations and aberrant gene expression during cellular differentiation lead to neurodevelopmental disorders, such as Prader-Willi syndrome (PWS), which results from the deletion of an imprinted locus on paternally inherited chromosome 15. We analyzed chromatin-associated RNA in human induced pluripotent cells (iPSCs) upon depletion of hybrid small nucleolar long non-coding RNAs (sno-lncRNAs) and 5' snoRNA capped and polyadenylated long non-coding RNAs (SPA-lncRNAs) transcribed from the locus deleted in PWS. We found that rapid ablation of these lncRNAs affects transcription of specific gene classes. Downregulated genes contribute to neurodevelopment and neuronal maintenance, while upregulated genes are predominantly involved in the negative regulation of cellular metabolism and apoptotic processes. Our data reveal the importance of SPA-lncRNAs and sno-lncRNAs in controlling gene expression in iPSCs and provide a platform for synthetic experimental approaches in PWS studies. We conclude that ncRNAs transcribed from the PWS locus are critical regulators of a transcriptional signature, which is important for neuronal differentiation and development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Prader-Willi , ARN Largo no Codificante , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN no Traducido , ARN Nucleolar Pequeño/genética , ARN Largo no Codificante/genética , Impresión Genómica
3.
Diagnostics (Basel) ; 12(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36359559

RESUMEN

Thyroid cancer is the most prevalent endocrine cancer among the female population in the Kingdom of Saudi Arabia (KSA) and the ninth most common in the male population in Saudi Arabia. Over the past years, an increasing incidence of thyroid cancer has been reported in Saudi Arabia. However, the etiology of thyroid cancer is still not clear. Therefore, this study aimed to estimate thyroid cancer incidence and mortality trends in Saudi Arabia from 1990 to 2019. The current study utilized the Global Burden of Disease and the Institute for Health Metrics and Evaluation databases to extract prevalence data of thyroid cancer in Saudi Arabia from 1990 to 2019. Moreover, the current project utilizes Global Burden of Disease (GBD) web-based tools to visualize these data. In total, 23,846 cases (17,220 females and 6626 males) were diagnosed with thyroid cancer in Saudi Arabia from 1990 to 2019. The incidence is higher in females than in males. Over these 30 years, women's incidence steadily increased by 15-fold versus a 22-fold increase in men. Moreover, there were 2056 deaths in total caused by thyroid cancer in KSA. The mortality rate in women steadily increased by threefold in the same period. However, the increase in mortality was higher in males (sixfold). A high percentage of YLLs was observed in males, with around 24.8% ranging from 30 to 34 and 40 to 45 years. Thyroid cancer incidence rates have increased exponentially between 1990 and 2019. The expansion of the incidence of thyroid cancer in Saudi Arabia could be due to the increased development in detection and diagnosis. The current study provided evidence of the need to increase awareness and diagnosis in the male population.

4.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052997

RESUMEN

Acute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored. By using a combination of human AML cell lines and AML patient samples together with mouse stromal cells and a MLL-AF9 mouse model, here we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption to feed the tricarboxylic acid cycle (TCA) and lipid biosynthesis. By performing transcriptome analysis and tracer-based metabolic NMR analysis, we observe that stromal cells present a higher rate of glycolysis when co-cultured with AML cells. We also find that acetate in stromal cells is derived from pyruvate via chemical conversion under the influence of reactive oxygen species (ROS) following ROS transfer from AML to stromal cells via gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells and propose two different molecular targets, ACSS2 and gap junctions, that could potentially be exploited for adjuvant therapy.


Asunto(s)
Leucemia Mieloide Aguda , Acetatos , Animales , Humanos , Leucemia Mieloide Aguda/metabolismo , Lípidos , Ratones , Piruvatos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células del Estroma/metabolismo , Microambiente Tumoral
5.
EMBO Rep ; 22(5): e51120, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33779025

RESUMEN

Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells. Here we show that MYBL2 activates ATM and suppresses replication stress in ESCs. Consequently, loss of MYBL2 or inhibition of ATM or Mre11 in ESCs results in replication fork slowing, increased fork stalling and elevated origin firing. Additionally, we demonstrate that inhibition of CDC7 activity rescues replication stress induced by MYBL2 loss and ATM inhibition, suggesting that uncontrolled new origin firing may underlie the replication stress phenotype resulting from loss/inhibition of MYBL2 and ATM. Overall, our study proposes that in addition to ATR, a MYBL2-MRN-ATM replication stress response pathway functions in ESCs to control DNA replication initiation and prevent genome instability.


Asunto(s)
Proteínas de Ciclo Celular , Células Madre Pluripotentes , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes/metabolismo
6.
Cancer Res ; 78(20): 5767-5779, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30082276

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by blood cytopenias that occur as a result of somatic mutations in hematopoietic stem cells (HSC). MDS leads to ineffective hematopoiesis, and as many as 30% of patients progress to acute myeloid leukemia (AML). The mechanisms by which mutations accumulate in HSC during aging remain poorly understood. Here we identify a novel role for MYBL2 in DNA double-strand break (DSB) repair in HSC. In patients with MDS, low MYBL2 levels associated with and preceded transcriptional deregulation of DNA repair genes. Stem/progenitor cells from these patients display dysfunctional DSB repair kinetics after exposure to ionizing radiation (IR). Haploinsufficiency of Mybl2 in mice also led to a defect in the repair of DSBs induced by IR in HSC and was characterized by unsustained phosphorylation of the ATM substrate KAP1 and telomere fragility. Our study identifies MYBL2 as a crucial regulator of DSB repair and identifies MYBL2 expression levels as a potential biomarker to predict cellular response to genotoxic treatments in MDS and to identify patients with defects in DNA repair. Such patients with worse prognosis may require a different therapeutic regimen to prevent progression to AML.Significance: These findings suggest MYBL2 levels may be used as a biological biomarker to determine the DNA repair capacity of hematopoietic stem cells from patients with MDS and as a clinical biomarker to inform decisions regarding patient selection for treatments that target DNA repair.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5767/F1.large.jpg Cancer Res; 78(20); 5767-79. ©2018 AACR.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Células Madre Hematopoyéticas/metabolismo , Transactivadores/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Ensayo Cometa , Reparación del ADN , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genotipo , Humanos , Cinética , Ratones , Ratones Endogámicos C57BL , Síndromes Mielodisplásicos/metabolismo , Fosforilación , Radiación Ionizante
7.
Cell Rep ; 24(6): 1496-1511.e8, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089261

RESUMEN

During somatic reprogramming, Yamanaka's pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process.


Asunto(s)
Proteínas de Ciclo Celular/genética , Transactivadores/genética , Reprogramación Celular , Transición Epitelial-Mesenquimal , Humanos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA