RESUMEN
Objective: To measure the correlation between single breath counting (SBC) and forced vital capacity (liters, FVCL) in amyotrophic lateral sclerosis (ALS) patients and to define the utility of SBC for determining when patients meet the threshold for initiation of noninvasive positive pressure ventilation (FVC < 50% predicted [FVCpred]). Methods: Both patient paced (SBCpp) or externally paced (SBCep) counting along with FVCL+pred and standard clinical data were collected. Linear regression was used to examine SBCpp and SBCep as a predictor of FVCL. Receiver operating characteristic curve analysis evaluated the sensitivity and specificity of SBC categorically predicting FVCpred of ≤50%. Results: In 30 ALS patients, SBC explained a moderate proportion of the variance in FVCL (SBCpp: R2= 0.431, p < 0.001; SBCep: R2 = 0.511, p < 0.01); this proportion improved when including covariates (SBCpp: R2= 0.635, p < 0.01; SBCep: R2= 0.657, p < 0.01). Patients with minimal speech involvement performed similarly in unadjusted (SBCpp: R2 = 0.511, p < 0.01; SBCep: R2= 0.595, p < 0.01) and adjusted (SBCpp: R2 = 0.634, p < 0.01; SBCep: R2= 0.650, p < 0.01) models. SBCpp had 100% sensitivity and 60% specificity (area under curve (AUC) = 0.696) for predicting FVCpred <50%. SBCep had 100% sensitivity and 56% specificity (AUC = 0.696). With minimal speech involvement SBCpp and SBCep both had 100% sensitivity and 76.1% specificity (SPCpp: AUC = 0.845; SBCep: AUC = 0.857). Conclusions: SBC explains a moderate proportion of variance in FVC and is an extremely sensitive marker of poor FVC. When FVC cannot be obtained, such as during the current COVID-19 pandemic, SBC is helpful in directing patient care.
Asunto(s)
Esclerosis Amiotrófica Lateral , COVID-19 , Esclerosis Amiotrófica Lateral/diagnóstico , Humanos , Pandemias , SARS-CoV-2 , Capacidad VitalRESUMEN
BACKGROUND AND OBJECTIVE: Primary lateral sclerosis (PLS) is a neurodegenerative disease characterized by progressive upper motor neuron dysfunction. Because PLS patients represent only 1 to 4% of patients with adult motor neuron diseases, there is limited information about the disease's natural history. The objective of this study was to establish a large multicenter retrospective longitudinal registry of PLS patients seen at Northeast ALS Consortium (NEALS) sites to better characterize the natural progression of PLS. Methods: Clinical characteristics, electrophysiological findings, laboratory values, disease-related symptoms, and medications for symptom management were collected from PLS patients seen between 2000 and 2015. Results: The NEALS registry included data from 250 PLS patients. Median follow-up time was 3 years. The mean rate of functional decline measured by ALSFRS-R total score was -1.6 points/year (SE:0.24, n = 124); the mean annual decline in vital capacity was -3%/year (SE:0.55, n = 126). During the observational period, 18 patients died, 17 patients had a feeding tube placed and 7 required permanent assistive ventilation. Conclusions: The NEALS PLS Registry represents the largest available aggregation of longitudinal clinical data from PLS patients and provides a description of expected natural disease progression. Data from the registry will be available to the PLS community and can be leveraged to plan future clinical trials in this rare disease.