Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Intervalo de año de publicación
1.
Viruses ; 15(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37112869

RESUMEN

Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiología , Transportes , Vacunación
2.
Microb Genom ; 8(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36106981

RESUMEN

During the first semester of 2021, all of Brazil has suffered an intense wave of COVID-19 associated with the Gamma variant. In July, the first cases of Delta variant were detected in the state of Rio de Janeiro. In this work, we have employed phylodynamic methods to analyse more than 1 600 genomic sequences of Delta variant collected until September in Rio de Janeiro to reconstruct how this variant has surpassed Gamma and dispersed throughout the state. After the introduction of Delta, it has initially spread mostly in the homonymous city of Rio de Janeiro, the most populous of the state. In a second stage, dispersal occurred to mid- and long-range cities, which acted as new close-range hubs for spread. We observed that the substitution of Gamma by Delta was possibly caused by its higher viral load, a proxy for transmissibility. This variant turnover prompted a new surge in cases, but with lower lethality than was observed during the peak caused by Gamma. We reason that high vaccination rates in the state of Rio de Janeiro were possibly what prevented a higher number of deaths.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética
3.
Viruses ; 14(8)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-36016262

RESUMEN

In the present study, we provide a retrospective genomic surveillance of the SARS-CoV-2 pandemic in Lebanon; we newly sequence the viral genomes of 200 nasopharyngeal samples collected between July 2020 and February 2021 from patients in different regions of Lebanon and from travelers crossing the Lebanese-Syrian border, and we also analyze the Lebanese genomic dataset available at GISAID. Our results show that SARS-CoV-2 infections in Lebanon during this period were shaped by the turnovers of four dominant SARS-CoV-2 lineages, with B.1.398 being the first to thoroughly dominate. Lebanon acted as a dispersal center of B.1.398 to other countries, with intercontinental transmissions being more common than within-continent. Within the country, the district of Tripoli, which was the source of 43% of the total B.1.398 sequences in our study, was identified as being an important source of dispersal in the country. In conclusion, our findings exemplify the butterfly effect, by which a lineage that emerges in a small area can be spread around the world, and highlight the potential role of developing countries in the emergence of new variants.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Líbano/epidemiología , Pandemias , Estudios Retrospectivos , SARS-CoV-2/genética
4.
Microb Drug Resist ; 28(8): 849-852, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35833887

RESUMEN

Pseudomonas aeruginosa is an opportunist pathogen usually associated with life threatening infections and exhibits a set of intrinsic and acquired antimicrobial mechanisms. Although resistance to penicillins-like compounds is commonly associated with the chromosomal Pseudomonas-derived cephalosporinases ß-lactamase, the real contribution of OXA-50, a second chromosomally encoded ß-lactamase, remains unclear. In this study, we characterized the biochemical properties of OXA-50, OXA-488, and OXA-494. Both oxacilinases differ from OXA-50 in two amino acids each. The blaOXA-50, blaOXA-488, and blaOXA-494 were cloned into pET26b+ that was transformed into Escherichia coli DH5α strain, expressed in E. coli BL21 strain, and then purified for obtaining the hydrolytic parameters. Benzylpenicillin was the preferential substrate instead of oxacillin. Besides, OXA-488 showed a threefold increase in catalytic efficiency for benzylpenicillin, and it was twofold more efficient in hydrolyzing imipenem, compared with OXA-50, although such carbapenemase activity was considered weak. In addition, OXA-488 and OXA-494 showed an increased affinity for penicillins, which contributed to the increased catalytic efficiency against ampicillin, especially OXA-488. Chromosomally encoded resistance mechanisms are usually overshadowed by acquired mechanisms. However, understanding their real contribution is essential to comprehend the versatile profiles verified in P. aeruginosa isolates. Such information can help to choose the best therapy in a scenario of limited options.


Asunto(s)
Pseudomonas aeruginosa , beta-Lactamas , Antibacterianos/farmacología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Cinética , Pruebas de Sensibilidad Microbiana , Oxacilina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacología
5.
Front Public Health ; 10: 849978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273945

RESUMEN

In this study, we report the first case of intra-host SARS-CoV-2 recombination during a coinfection by the variants of concern (VOC) AY.33 (Delta) and P.1 (Gamma) supported by sequencing reads harboring a mosaic of lineage-defining mutations. By using next-generation sequencing reads intersecting regions that simultaneously overlap lineage-defining mutations from Gamma and Delta, we were able to identify a total of six recombinant regions across the SARS-CoV-2 genome within a sample. Four of them mapped in the spike gene and two in the nucleocapsid gene. We detected mosaic reads harboring a combination of lineage-defining mutations from each VOC. To our knowledge, this is the first report of intra-host RNA-RNA recombination between two lineages of SARS-CoV-2, which can represent a threat to public health management during the COVID-19 pandemic due to the possibility of the emergence of viruses with recombinant phenotypes.


Asunto(s)
COVID-19 , Coinfección , Humanos , Pandemias , Filogenia , SARS-CoV-2/genética
6.
Genomics ; 114(2): 110287, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131478

RESUMEN

We sequenced 13 Neisseria gonorrhoeae isolates exhibiting distinct susceptibility profiles and which were recovered over 12 years in the metropolitan region of São Paulo, Brazil. Whole Genome Sequencing (WGS) was performed on an Illumina MiSeq™ 2 × 300 bp paired-end reads. Bioinformatics analyses were carried out using CGE, PATRIC, and BLAST databases for manual curation of obtained genomes. Multilocus sequence typing (MLST) analysis identified seven STs, namely ST1580, ST1590, ST1901, ST1902, ST8161, ST9363, and ST15640. Moreover, a diversity of mutations was observed in MtrR/G45D-A39T, PIB/G120K-A121S, and PBP1/L421P. Mutations associated with sulfonamides (DHPS/R228S) and rifampicin (RNAP/H552N) were also detected, as well as tetracycline resistance determinants, namely rpsJ/V57M and tet(M). The results presented herein can contribute to the knowledge of N. gonorrhoeae strains circulating in Sao Paulo, Brazil.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brasil , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/genética , Gonorrea/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Neisseria gonorrhoeae/genética
8.
PLoS Negl Trop Dis ; 15(10): e0009835, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34644287

RESUMEN

The sharp increase of COVID-19 cases in late 2020 has made Brazil the new epicenter of the ongoing SARS-CoV-2 pandemic. The novel viral lineages P.1 (Variant of Concern Gamma) and P.2, respectively identified in the Brazilian states of Amazonas and Rio de Janeiro, have been associated with potentially higher transmission rates and antibody neutralization escape. In this study, we performed the whole-genome sequencing of 185 samples isolated from three out of the five Brazilian regions, including Amazonas (North region), Rio Grande do Norte, Paraíba and Bahia (Northeast region), and Rio de Janeiro (Southeast region) in order to monitor the spread of SARS-CoV-2 lineages in Brazil in the first months of 2021. Here, we showed a widespread dispersal of P.1 and P.2 across Brazilian regions and, except for Amazonas, P.2 was the predominant lineage identified in the sampled states. We estimated the origin of P.2 lineage to have happened in February, 2020 and identified that it has differentiated into new clades. Interstate transmission of P.2 was detected since March, but reached its peak in December, 2020 and January, 2021. Transmission of P.1 was also high in December and its origin was inferred to have happened in August 2020. We also confirmed the presence of lineage P.7, recently described in the southernmost region of Brazil, to have spread across the Northeastern states. P.1, P.2 and P.7 are descended from the ancient B.1.1.28 strain, which co-dominated the first phase of the pandemic in Brazil with the B.1.1.33 strain. We also identified the occurrence of a new lineage descending from B.1.1.33 that convergently carries the E484K mutation, N.9. Indeed, the recurrent report of many novel SARS-CoV-2 genetic variants in Brazil could be due to the absence of effective control measures resulting in high SARS-CoV2 transmission rates. Altogether, our findings provided a landscape of the critical state of SARS-CoV-2 across Brazil and confirm the need to sustain continuous sequencing of the SARS-CoV-2 isolates worldwide in order to identify novel variants of interest and monitor for vaccine effectiveness.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Genómica/métodos , SARS-CoV-2 , Brasil/epidemiología , COVID-19/transmisión , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/genética
9.
Front Public Health ; 9: 745310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660520

RESUMEN

The emergence of several SARS-CoV-2 lineages presenting adaptive mutations is a matter of concern worldwide due to their potential ability to increase transmission and/or evade the immune response. While performing epidemiological and genomic surveillance of SARS-CoV-2 in samples from Porto Ferreira-São Paulo-Brazil, we identified sequences classified by pangolin as B.1.1.28 harboring Spike L452R mutation, in the RBD region. Phylogenetic analysis revealed that these sequences grouped into a monophyletic branch, with others from Brazil, mainly from the state of São Paulo. The sequences had a set of 15 clade defining amino acid mutations, of which six were in the Spike protein. A new lineage was proposed to Pango and it was accepted and designated P.4. In samples from the city of Porto Ferreira, P.4 lineage has been increasing in frequency since it was first detected in March 2021, corresponding to 34.7% of the samples sequenced in June, the second in prevalence after P.1. Also, it is circulating in 30 cities from the state of São Paulo, and it was also detected in one sample from the state of Sergipe and two from the state of Rio de Janeiro. Further studies are needed to understand whether P.4 should be considered a new threat.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil , Humanos , Mutación , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética
10.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34642605

RESUMEN

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

11.
Viruses ; 13(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34696443

RESUMEN

In the present study, we provide a retrospective genomic epidemiology analysis of the SARS-CoV-2 pandemic in the state of Rio de Janeiro, Brazil. We gathered publicly available data from GISAID and sequenced 1927 new genomes sampled periodically from March 2021 to June 2021 from 91 out of the 92 cities of the state. Our results showed that the pandemic was characterized by three different phases driven by a successive replacement of lineages. Interestingly, we noticed that viral supercarriers accounted for the overwhelming majority of the circulating virus (>90%) among symptomatic individuals in the state. Moreover, SARS-CoV-2 genomic surveillance also revealed the emergence and spread of two new variants (P.5 and P.1.2), firstly reported in this study. Our findings provided important lessons learned from the different epidemiological aspects of the SARS-CoV-2 dynamic in Rio de Janeiro. Altogether, this might have a strong potential to shape future decisions aiming to improve public health management and understanding mechanisms underlying virus dispersion.


Asunto(s)
COVID-19/epidemiología , Genoma Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , COVID-19/mortalidad , Niño , Preescolar , Punto Alto de Contagio de Enfermedades , Monitoreo Epidemiológico , Femenino , Biblioteca de Genes , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Filogenia , Estudios Retrospectivos , Adulto Joven
12.
J Glob Antimicrob Resist ; 26: 177-179, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175444

RESUMEN

OBJECTIVES: Using whole-genome sequencing (WGS), we aimed to characterise a Pseudomonas aeruginosa ST143 clinical strain (Pb9) that presented resistance to meropenem and imipenem and susceptibility to piperacillin/tazobactam and broad-spectrum cephalosporins. METHODS: The antimicrobial susceptibility profile was confirmed by broth microdilution. WGS was performed using an Illumina MiSeq platform to identify possible genetic determinants of ß-lactam resistance. Transcription levels of chromosomally encoded efflux systems and oprD were evaluated by RT-qPCR. RESULTS: WGS analysis showed that no acquired carbapenemase-encoding gene was found in isolate Pb9, although mutations in the chromosomally encoded ß-lactamase genes blaOXA-488, blaPIB-1 and blaPDC-5 were observed. In addition, we detected a premature stop codon in the major porin-encoding gene oprD coupled with hyperexpression of MexAB-OprM and MexEF-OprN. CONCLUSION: Our results suggest that the ß-lactam resistance phenotype presented by strain Pb9 might be related to an association of OprD loss with hyperexpression of the efflux pump systems MexAB-OprM and MexEF-OprN. However, the contribution of OXA-488, PDC-5 and PIB-1 to this phenotype remains unclear and warrants further investigation.


Asunto(s)
Cefalosporinas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Cefalosporinas/farmacología , Células Clonales , Genómica , Meropenem , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética
14.
Virulence ; 12(1): 951-967, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33734031

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) of the ST1-SCCmecIV lineage has been associated with community-acquired (CA) infections in North America and Australia. In Brazil, multi-drug resistant ST1-SCCmecIV MRSA has emerged in hospital-associated (HA) diseases in Rio de Janeiro. To understand these epidemiological differences, genomic and phylogenetic analyses were performed. In addition, virulence assays were done for representative CA - and HA-MRSA strains. Despite the conservation of the virulence repertoire, some genes were missing in Brazilian ST1-SCCmecIV including lukSF-PV, fnbB, and several superantigen-encoded genes. Additionally, CA-MRSA lost the splDE while HA-MRSA strains conserved the complete operon. Most of these variable genes were located in mobile genetic elements (MGE). However, conservation and maintenance of MGEs were often observed despite the absence of their associated virulence markers. A Bayesian phylogenetic tree revealed the occurrence of more than one entrance of ST1 strains in Rio de Janeiro. The tree shape and chronology allowed us to infer that the hospital-associated ST1-SCCmecIV from Brazil and the community-acquired USA400 from North America are not closely related and that they might have originated from different MSSA strains that independently acquired SCCmecIV cassettes. As expected, representatives of ST1 strains from Brazil showed lower cytotoxicity and a greater ability to survive inside human host cells. We suggest that Brazilian ST1-SCCmecIV strains have adapted to the hospital setting by reducing virulence and gaining the ability to persist and survive inside host cells. Possibly, these evolutionary strategies may balance the biologic cost of retaining multiple antibiotic resistance genes.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Infección Hospitalaria/microbiología , Evolución Molecular , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/microbiología , Teorema de Bayes , Genómica , Genotipo , Humanos , Staphylococcus aureus Resistente a Meticilina/clasificación , Filogenia , Virulencia , Factores de Virulencia/genética
15.
Virus Res ; 296: 198345, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631222

RESUMEN

Emergence of novel SARS-CoV-2 lineages are under the spotlight of the media, scientific community and governments. Recent reports of novel variants in the United Kingdom, South Africa and Brazil (B.1.1.28-E484K) have raised intense interest because of a possible higher transmission rate or resistance to the novel vaccines. Nevertheless, the spread of B.1.1.28 (E484K) and other variants in Brazil is still unknown. In this work, we investigated the population structure and genomic complexity of SARS-CoV-2 in Rio Grande do Sul, the southernmost state in Brazil. Most samples sequenced belonged to the B.1.1.28 (E484K) lineage, demonstrating its widespread dispersion. We were the first to identify two independent events of co-infection caused by the occurrence of B.1.1.28 (E484K) with either B.1.1.248 or B.1.91 lineages. Also, clustering analysis revealed the occurrence of a novel cluster of samples circulating in the state (named VUI-NP13L) characterized by 12 lineage-defining mutations. In light of the evidence for E484K dispersion, co-infection and emergence of VUI-NP13 L in Rio Grande do Sul, we reaffirm the importance of establishing strict and effective social distancing measures to counter the spread of potentially more hazardous SARS-CoV-2 strains.


Asunto(s)
COVID-19/epidemiología , Coinfección/epidemiología , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Análisis por Conglomerados , Humanos , Polimorfismo de Nucleótido Simple
16.
17.
Microb Drug Resist ; 27(3): 320-327, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32762592

RESUMEN

We characterized by whole-genome sequencing (WGS) six carbapenem-resistant Acinetobacter baumannii strains isolated from a Brazilian tertiary hospital during a 14-day period. The ISAba1-blaOXA-23 structure was found in the chromosome of five isolates, whereas blaOXA-72 was inserted in a 16.6-kb plasmid in two isolates. The presence of ISAba1-blaADC-like justified the high broad-spectrum cephalosporins minimal inhibitory concentrations (MICs) (MIC50, > 512 mg/L) verified in all isolates. Only minocycline (MIC50, ≤ 0.5 µg/mL), polymyxin B (MIC50, 0.5 µg/mL), and tigecycline (MIC50, 0.5 µg/mL) were in vitro active against such isolates. A diversity of other antimicrobial resistance determinants (aph(3')-VIa, aadA1, aac(3')-IIa, strA, strB, sul2, drfA1, mph(E), msr(E), tetB, and floR) was also observed, which may confer resistance to at last six distinct antimicrobial classes. Four distinct pulsed-field gel electrophoresis (PFGE) profiles were observed during the study period, which belonged to ST79/ST258 (n = 2; IC5), ST25/ST229 (n = 2; IC7), ST1 (n = 1; IC1), and ST162/ST235 (n = 1; IC4). Although the ST1 isolate that carried blaOXA-23 and blaOXA-72 was introduced in this hospital setting by a transferred patient, two clonally related ST79/ST258 isolates carrying either one of these carbapenemase encoding genes were recovered from two patients who were hospitalized within the same period of time in the same hospital unit. Finally, a good correlation between PFGE/MLST, blaOXA-51 variant, and single nucleotide polymorphisms was also observed. Here we demonstrated that distinct extensively drug-resistant A. baumannii clones can circulate in the same hospital setting during a short time period, illustrating a very complex epidemiological scenario for this priority pathogen.


Asunto(s)
Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Brasil/epidemiología , Electroforesis en Gel de Campo Pulsado , Genes Bacterianos/genética , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos , Polimorfismo de Nucleótido Simple , Centros de Atención Terciaria , Secuenciación Completa del Genoma
18.
mSphere ; 5(5)2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028683

RESUMEN

This study provides the genomic characterization and clinical description of bloodstream infections (BSI) cases due to ST15 KPC-2 producer Klebsiella pneumoniae Six KPC-K. pneumoniae isolates were recovered in 2015 in a tertiary Brazilian hospital and were analyzed by whole-genome sequencing (WGS) (Illumina MiSeq short reads). Of these, two isolates were further analyzed by Nanopore MinION sequencing, allowing complete chromosome and plasmid circularization (hybrid assembly), using Unicycler software. The clinical analysis showed that the 30-day overall mortality for these BSI cases was high (83%). The isolates exhibited meropenem resistance (MICs, 32 to 128 mg/liter), with 3/6 isolates resistant to polymyxin B. The conjugative properties of the blaKPC-2 plasmid and its copy number were assessed by standard conjugation experiments and sequence copy number analysis. We identified in all six isolates a small (8.3-kb), high-copy-number (20 copies/cell) non-self-conjugative IncQ plasmid harboring blaKPC-2 in a non-Tn4401 transposon. This plasmid backbone was previously reported to harbor blaKPC-2 only in Brazil, and it could be comobilized at a high frequency (10-4) into Escherichia coli J53 and into several high-risk K. pneumoniae clones (ST258, ST15, and ST101) by a common IncL/M helper plasmid, suggesting the potential of international spread. This study thus identified the international K. pneumoniae ST15 clone as a carrier of blaKPC-2 in a high-copy-number IncQ1 plasmid that is easily transmissible among other common Klebsiella strains. This finding is of concern since IncQ1 plasmids are efficient antimicrobial resistance determinant carriers across Gram-negative species. The spread of such carbapenemase-encoding IncQ1 plasmids should therefore be closely monitored.IMPORTANCE In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Plásmidos/genética , beta-Lactamasas/genética , Anciano , Anciano de 80 o más Años , Bacteriemia/microbiología , Elementos Transponibles de ADN , ADN Bacteriano/genética , Humanos , Infecciones por Klebsiella/sangre , Klebsiella pneumoniae/clasificación , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Estudios Retrospectivos , Centros de Atención Terciaria , Secuenciación Completa del Genoma
19.
Sci Total Environ ; 726: 138232, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32304941

RESUMEN

Carbapenem resistance in Acinetobacter baumannii is a public health issue globally, mainly due to the production of carbapenem hydrolyzing class D ß-lactamases (CHDLs). In Brazil, OXA-23 and OXA-143 CHDLs have been prevalent in A. baumannii from clinical settings, with some OXA-23 reports in the environmental samples, whereas OXA-72 has begun to be increasingly reported. This study aims to perform the genomic and microbiological characterization of carbapenem-resistant A. baumannii isolates recovered from migratory birds and captive birds inhabiting a lake within a Brazilian Zoo. Four hundred and eighty-one gram-negative bacilli were recovered from choanal and cloacal swabs obtained from 50 migratory birds and 37 captive birds present at the zoo's lake between July and August of 2012. Among all GNB, nine OXA-72-producing A. baumannii were detected from the microbiota of four migratory and five captive aquatic birds. The OXA-72-producing A. baumannii isolates were submitted to antimicrobial susceptibility test and PFGE, exhibiting a multidrug-resistant profile and clonal relatedness with OXA-72-positive human isolates circulating for eighteen years in a hospital setting. MLST, plasmid analysis and whole-genome sequencing revealed which all carbapenem-resistant A. baumannii from bird and human hosts belonged to clonal complex 79, and harboured a small plasmid (⁓16.6-kb in size), named pAC1-BRL, which carried blaOXA-72 gene, macrolide resistance genes msrE and mphE, and the toxin-antitoxin system AbkAB. To determine the impact of pAC1-BRL acquisition in the the capacity of a microorganism to survive in a competitive environment (in the following called fitness), the laboratory strain A. baumannii ATCC 19606 was used in the fitness experiments and suggested an increase of its relative fitness after the pAC1-BRL acquisition. In summary, the detection of OXA-72-producing A. baumannii strains belonging to CC79 in aquatic birds is a piece of epidemiological evidence demonstrating that dissemination of high-risk bacteria is extending beyond the hospital.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii/efectos de los fármacos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Aves , Brasil , Carbapenémicos , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Macrólidos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , beta-Lactamasas
20.
mSphere ; 4(5)2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619499

RESUMEN

We characterize by whole-plasmid-sequence (WPS) two-plasmid-borne blaOXA-58 obtained from Acinetobacter seifertii (Asp-1069) and A. baumannii (Acb-45063) clinical strains recovered 17 years apart from distinct Brazilian regions. Multilocus sequence type (MLST) analysis showed that the Asp-1069 and Acb-45063 strains belong to ST551 and ST15/CC15, respectively. WPS analysis demonstrated that blaOXA-58 was located in two distinct plasmids named pAs1069_a (24,672 bp/44 open reading frames [ORFs]) and pAb45063_b (19,808 bp/24 ORFs), which belong to the GR8/GR23 (repAci23) and GR4 (repAci4) incompatibility groups, respectively. The genetic environments surrounding blaOXA-58 revealed that it was flanked by two intact ISAba3 copies on pAb45063_b, which differed from pAs1069_a. In the latter, the upstream ISAba3 copy was truncated by insertion of ISAba825 element. Although Re27-specific recombination sites were found adjacent to ISAba3-blaOXA-58-ISAba3 arrangement on pAb45063_b, such structures were absent on pAs1069_a. The conserved ISAba125-araC1-lysE arrangement was disrupted by TnaphA6 harboring the aminoglycosides resistance gene aphA6 on pAs1069_a, while an IS26-blaTEM-1-aac(3)-IIa-IS26 genetic structure was found upstream from ISAba3-blaOXA-58-ISAba3 on pAb45063_b. Other two plasmids, pAb45063_a (183,767 bp/209 ORFs) and pAs1069_b (13,129 bp/14 ORFs), were also found in the OXA-58-producing Acinetobacter species strains, harboring the strA and strB genes and the sul2 gene, which confer resistance to streptomycin and sulfonamides, respectively. The plasmid-mediated virulence factors corresponding to genes tonB, spl, glmM, ppa, sulP, and map were found in both strains, as well distinct toxin-antitoxin system-encoding genes stbD and relE (pAs1069_a), brnT and brnA (pAb45063_b), and xreE (pAb45063_a). Although infrequently reported in Brazil, plasmid-borne blaOXA-58 showed a complex and diverse genetic backbone that confers stability in different Acinetobacter species that have been isolated from nosocomial settings over time.IMPORTANCE Although the blaOXA-58 gene has been infrequently described in Brazil, contrasting with other bordering South American countries, we verified the maintenance of this resistance determinant over time among carbapenem-resistant Acinetobacter species isolates, not only in nosocomial settings but also in the environment. In addition, to the best of our knowledge, this is the first study to have used WPS analysis to evaluate the genetic surroundings of blaOXA-58 in Brazil. Moreover, the A. seifertii and A. baumannii clinical strains evaluated in this study were recovered 17 years apart in hospitals located in distinct Brazilian geographic regions.


Asunto(s)
Acinetobacter/genética , Plásmidos/genética , beta-Lactamasas/genética , Acinetobacter/efectos de los fármacos , Acinetobacter/enzimología , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Técnicas de Tipificación Bacteriana , Brasil , Carbapenémicos/farmacología , ADN Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...