Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4540, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500644

RESUMEN

Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.


Asunto(s)
Solanum lycopersicum , Frutas/metabolismo , Aciltransferasas/metabolismo , Vías Biosintéticas , Fitomejoramiento
2.
New Phytol ; 237(5): 1574-1589, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36369885

RESUMEN

Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.


Asunto(s)
Sequías , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Agua/metabolismo , Hojas de la Planta/fisiología , Alcanos , Ceras , Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta/metabolismo
3.
New Phytol ; 233(3): 1220-1237, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34758118

RESUMEN

Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.


Asunto(s)
Alcaloides , Solanum lycopersicum , Alcaloides/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo
4.
Nat Chem Biol ; 16(7): 740-748, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424305

RESUMEN

Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Saponinas/biosíntesis , Spinacia oleracea/metabolismo , Terpenos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Retículo Endoplásmico/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glucosiltransferasas/metabolismo , Ácido Glucurónico/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Spinacia oleracea/genética
5.
Sci Rep ; 9(1): 11769, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409808

RESUMEN

With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Genoma de Planta , Solanum melongena/genética , Etilenos/metabolismo , Redes Reguladoras de Genes , MicroARNs/genética , Solanum melongena/metabolismo
6.
Plant Physiol ; 179(4): 1486-1501, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700539

RESUMEN

The skin of fleshy fruit is typically covered by a thick cuticle. Some fruit species develop different forms of layers directly above their skin. Reticulation, for example, is a specialized suberin-based coating that ornaments some commercially important melon (Cucumis melo) fruit and is an important quality trait. Despite its importance, the structural, molecular, and biochemical features associated with reticulation are not fully understood. Here, we performed a multilevel investigation of structural attributes, chemical composition, and gene expression profiles on a set of reticulated and smooth skin melons. High-resolution microscopy, surface profiling, and histochemical staining assays show that reticulation comprises cells with heavily suberized walls accumulating large amounts of typical suberin monomers, as well as lignified cells localized underneath the specialized suberized cell layer. Reticulated skin was characterized by induced expression of biosynthetic genes acting in the core phenylpropanoid, suberin, lignin, and lignan pathways. Transcripts of genes associated with lipid polymer assembly, cell wall organization, and loosening were highly enriched in reticulated skin tissue. These signatures were exclusive to reticulated structures and absent in both the smooth surfaces observed in between reticulated regions and in the skin of smooth fruit. Our data provide important insights into the molecular and metabolic bases of reticulation and its tight association with skin ligno-suberization during melon fruit development. Moreover, these insights are likely to contribute to melon breeding programs aimed at improving postharvest qualities associated with fleshy fruit surface layers.


Asunto(s)
Cucumis/anatomía & histología , Frutas/anatomía & histología , Vías Biosintéticas/genética , Pared Celular/ultraestructura , Cucumis/genética , Cucumis/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Lípidos de la Membrana/biosíntesis , Metabolómica , Fenotipo , Células Vegetales/metabolismo , ARN Mensajero , Propiedades de Superficie
7.
Plant J ; 96(1): 223-232, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29979480

RESUMEN

High-throughput RNA sequencing has proven invaluable not only to explore gene expression but also for both gene prediction and genome annotation. However, RNA sequencing, carried out on tens or even hundreds of samples, requires easy and cost-effective sample preparation methods using minute RNA amounts. Here, we present TranSeq, a high-throughput 3'-end sequencing procedure that requires 10- to 20-fold fewer sequence reads than the current transcriptomics procedures. TranSeq significantly reduces costs and allows a greater increase in size of sample sets analyzed in a single experiment. Moreover, in comparison with other 3'-end sequencing methods reported to date, we demonstrate here the reliability and immediate applicability of TranSeq and show that it not only provides accurate transcriptome profiles but also produces precise expression measurements of specific gene family members possessing high sequence similarity. This is difficult to achieve in standard RNA-seq methods, in which sequence reads cover the entire transcript. Furthermore, mapping TranSeq reads to the reference tomato genome facilitated the annotation of new transcripts improving >45% of the existing gene models. Hence, we anticipate that using TranSeq will boost large-scale transcriptome assays and increase the spatial and temporal resolution of gene expression data, in both model and non-model plant species. Moreover, as already performed for tomato (ITAG3.0; www.solgenomics.net), we strongly advocate its integration into current and future genome annotations.


Asunto(s)
Secuenciación del Exoma/métodos , Genes de Plantas/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Arabidopsis/genética , Solanum lycopersicum/genética , Análisis de Secuencia de ARN/métodos
9.
Nat Plants ; 3: 16205, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28005066

RESUMEN

The amount of cholesterol made by many plants is not negligible. Whereas cholesterogenesis in animals was elucidated decades ago, the plant pathway has remained enigmatic. Among other roles, cholesterol is a key precursor for thousands of bioactive plant metabolites, including the well-known Solanum steroidal glycoalkaloids. Integrating tomato transcript and protein co-expression data revealed candidate genes putatively associated with cholesterol biosynthesis. A combination of functional assays including gene silencing, examination of recombinant enzyme activity and yeast mutant complementation suggests the cholesterol pathway comprises 12 enzymes acting in 10 steps. It appears that half of the cholesterogenesis-specific enzymes evolved through gene duplication and divergence from phytosterol biosynthetic enzymes, whereas others act reciprocally in both cholesterol and phytosterol metabolism. Our findings provide a unique example of nature's capacity to exploit existing protein folds and catalytic machineries from primary metabolism to assemble a new, multi-step metabolic pathway. Finally, the engineering of a 'high-cholesterol' model plant underscores the future value of our gene toolbox to produce high-value steroidal compounds via synthetic biology.

10.
Plant Cell ; 28(6): 1440-60, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27225753

RESUMEN

The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular ß-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of ß-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating ß-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a ß-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in ß-diketone biosynthesis, demonstrating a gene cluster also in the ß-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response.


Asunto(s)
Hordeum/genética , Hordeum/metabolismo , Cetonas/metabolismo , Familia de Multigenes/genética , Triticum/genética , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Cetonas/química , Familia de Multigenes/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...