Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(5): 136, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862810

RESUMEN

Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.


Asunto(s)
Cannabidiol , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Emulsiones , Solubilidad , Cannabidiol/química , Cannabidiol/administración & dosificación , Emulsiones/química , Sistemas de Liberación de Medicamentos/métodos , Administración Oral , Química Farmacéutica/métodos , Tecnología de Extrusión de Fusión en Caliente/métodos , Liberación de Fármacos , Tamaño de la Partícula , Disponibilidad Biológica , Composición de Medicamentos/métodos , Polietilenglicoles/química , Estabilidad de Medicamentos , Aceite de Sésamo/química , Polivinilos
2.
Int J Pharm ; 655: 124044, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527563

RESUMEN

In recent years, several techniques were employed to develop a local sustained pulmonary delivery of sildenafil citrate (SC) as an alternative for the intravenous and oral treatment of pulmonary arterial hypertension (PAH). Most of these methods, however, need to be improved due to limitations of scalability, low yield production, low drug loading, and stability issues. In this study, we report the use of hot-melt extrusion (HME) as a scalable process for making Poly (lactic-co-glycolic acid) (PLGA) microparticles with high SC load. The prepared particles were tested in vitro for local drug delivery to the lungs by inhalation. Sodium bicarbonate was included as a porogen in the formulation to make the particles more brittle and to impart favorable aerodynamic properties. Six formulations were prepared with different formulation compositions. Laser diffraction analysis was used to estimate the geometric particle size distribution of the microparticles. In-vitro aerodynamic performance was evaluated by the next-generation cascade impactor (NGI). It was reported in terms of an emitted dose (ED), an emitted fraction (EF%), a respirable fraction (RF%), a fine particle fraction (FPF%), a mass median aerodynamic diameter (MMAD), and geometric standard deviation (GSD). The formulations have also been characterized for surface morphology, entrapment efficiency, drug load, and in-vitro drug release. The results demonstrated that PLGA microparticles have a mean geometric particle size between 6 and 14 µm, entrapment efficiency of 77 to 89 %, and SC load between 17 and 33 % w/w. Fifteen percent of entrapped sildenafil was released over 24 h from the PLGA microparticles, and seventy percent over 7 days. The aerodynamic properties included fine particle fraction ranging between 19 and 33 % and an average mass median aerodynamic diameter of 6-13 µm.


Asunto(s)
Hipertensión Arterial Pulmonar , Humanos , Citrato de Sildenafil , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Tecnología de Extrusión de Fusión en Caliente , Sistemas de Liberación de Medicamentos , Pulmón , Administración por Inhalación , Tamaño de la Partícula
3.
Artículo en Inglés | MEDLINE | ID: mdl-37811318

RESUMEN

Reports in the literature indicate that hot-melt extrusion (HME) processing techniques could alter the mechanical properties of the pharmaceutical physical blend, which may alter successful processing during tableting. The aim of this study was to evaluate whether HME processing conditions have an impact on the tabletability of Atorvastatin calcium trihydrate (ATR) in the presence of Neusilin® US2 (NUS2). ATR drug load of 25% was mixed with 75% of NUS2 and extruded using two screw configurations, screw speeds, and feed rates. Solid-state thermal analysis showed that ATR transformed to an amorphous form which led to improved solubility. ATR tabletability was affected positively by screw configuration that had no shearing and mixing force. SEM analysis indicated that a conveying screw configuration preserved the spherical nature of NUS2, thus improving ATR tabletability. This novel study demonstrates the significance of changing and monitoring the HME process parameters, which impact the materials' mechanical properties and may prevent adverse outcomes during tableting.

4.
J Pharm Sci ; 112(11): 2869-2878, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37327994

RESUMEN

The poor aqueous solubility is a well-recognized restriction for the clinical application of many drug molecules. Micelles delivery system provides a promising strategy for the solubility enhancement of hydrophobic drugs. This study developed and evaluated different polymeric mixed micelles prepared using hot-melt extrusion coupled hydration method to improve the solubility and extend the release of the model drug ibuprofen (IBP). The physicochemical properties of the prepared formulations were characterized in terms of particle size, polydispersity index, zeta potential, surface morphology, crystallinity, encapsulation efficiency, drug content, in vitro drug release, dilution stability, and storage stability. Soluplus®/poloxamer 407, Soluplus®/poloxamer 188, and Soluplus®/TPGS mixed micelles had average particle sizes of 86.2 ± 2.8, 89.6 ± 4.2, and 102.5 ± 3.13 nm, respectively with adequate encapsulation efficiencies of 80% to 92%. Differential scanning calorimetry studies confirmed that the IBP molecules were dissolved in the polymers in an amorphous state. The in vitro release results revealed that the IBP-loaded mixed micelles presented extended-release behavior compared to the free drug. In addition, the developed polymeric mixed micelles remained stable upon dilution and one-month storage. These results demonstrated that the hot-melt extrusion coupling hydration method could be a promising, effective, and environment-friendly manufacturing technique for the scale-up production of polymeric mixed micelles to deliver insoluble drugs.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36741268

RESUMEN

Studies have shown that 40 individuals out of 100,000 are diagnosed with rheumatoid arthritis (RA) yearly, with a total of 1.3 million in the United States. Furthermore, the impact of RA in some cases can extend to cardiovascular diseases (CVD), as the studies showed that 84% of RA patients are at risk of developing hypertension. This study aims to design and develop different dosage forms (capsule-in-capsule and three-dimensional (3D) printed tablet) of nifedipine/indomethacin fixed-dose combination (FDC). The hot-melt extrusion (HME) was utilized alone and with fused deposition modeling (FDM) techniques The developed dosage forms were intended to provide delayed-extended and immediate release profiles for indomethacin and nifedipine, respectively. FDC dosage forms were successfully developed and characterized. Nifedipine formulations showed significant improvement in release profiles, having 94% of the drug release at 30 minutes compared with pure nifedipine, which had a percent release of 2%. Furthermore, the release of indomethacin was successfully delayed at a pH of 1.2 and extended at a pH of 6.8. Differential scanning calorimetry results showed endothermic crystalline peaks at 165 °C and 176 °C for indomethacin and nifedipine, respectively. Moreover, the thermal analysis of all formulations showed the absence of the endothermic peaks indicating complete solubilization of indomethacin and nifedipine in the polymeric carriers. All formulations had post-processing drug content in the range of 95% to 98%. Moreover, results from the stability study showed that all formulations were able to remain chemically and physically stable with no signs of recrystallization or degradation. The designed FDC dosage forms could improve the quality of life by enhancing patient compliance and preventing the need for polypharmacy.

6.
Int J Pharm ; 635: 122709, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36801364

RESUMEN

Cervical cancer is known globally as one of the most common health problems in women. Indeed, one of the most convenient approaches for its treatment is an appropriate bioadhesive vaginal film. This approach provides a local treatment modality, which inevitably decreases dosing frequency and improves patient compliance. Recently, disulfiram (DSF) has been investigated and demonstrated to possess anticervical cancer activity; therefore, it is employed in this work. The current study aimed to produce a novel, personalized three-dimensional (3D) printed DSF extended-release film using the hot-melt extrusion (HME) and 3D printing technologies. The optimization of the formulation composition and the HME and 3D printing processing temperatures was an important factor for overcoming the DSF heat-sensitivity issue. In addition, the 3D printing speed was specifically the most crucial parameter for alleviating heat-sensitivity concerns, which led to the production of films (F1 and F2) with an acceptable DSF content and good mechanical properties. The bioadhesion film study using sheep cervical tissue indicated a reasonable adhesive peak force (N) of 0.24 ± 0.08 for F1 and 0.40 ± 0.09 for F2, while the work of adhesion (N.mm) for F1 and F2 was 0.28 ± 0.14 and 0.54 ± 0.14, respectively. Moreover, the cumulative in vitro release data indicated that the printed films released DSF for up to 24 h. HME-coupled 3D printing successfully produced a patient-centric and personalized DSF extended-release vaginal film with a reduced dose and longer dosing interval.


Asunto(s)
Disulfiram , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ovinos , Tecnología Farmacéutica/métodos , Temperatura , Neoplasias del Cuello Uterino/tratamiento farmacológico , Impresión Tridimensional , Liberación de Fármacos
7.
AAPS PharmSciTech ; 24(1): 47, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703024

RESUMEN

The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.


Asunto(s)
Antiinflamatorios no Esteroideos , Ibuprofeno , Ibuprofeno/química , Solubilidad , Antiinflamatorios no Esteroideos/química , Excipientes/química , Lípidos , Permeabilidad , Composición de Medicamentos/métodos , Rastreo Diferencial de Calorimetría , Difracción de Rayos X
8.
Eur J Pharm Biopharm ; 183: 102-111, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36632906

RESUMEN

The model of core-shell structured tablets is gaining increased interest due to its advantages in controlled-release and combinational drug delivery. Through the encapsulation of the drug by the outer shell, this model exhibits huge potential for reduced administration frequency, improved taste-masking, and personalized medication strategy. Although different types of core-shell tablets have been recently developed, most of them focused on the embedding of the solid tablets. Therefore there is still a need to investigate an optimized model in which multiple dosage forms can be loaded. This work uses hot-melt extrusion and fused deposition modeling 3D printing (FDM 3DP) techniques to develop a multifunctional core-shell model for controlled drug delivery. Acetaminophen (APAP) was used as the model drug. Hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) was used as the matrix materials. Polyethylene oxide (PEO) and Eudragit RS PO (E RSPO) were used to adjust the printability while the E RSPO was expected to act as an extended-release agent due to its hydrophobicity. Liquid, semi-solid and solid dosage forms could be successfully loaded into the produced shells. The formulations were characterized by scanning electron microscopy, three point-bend tests, differential scanning calorimetry, and dissolution studies. The dissolution results suggested the modified-release character of the designed model. Overall, the designed core-shell model could be successfully produced via hot-melt extrusion paired with FDM 3DP techniques and could be utilized for the delivery of distinct dosage forms which improve the on-demand formulation development for patient-centered medication.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tecnología de Extrusión de Fusión en Caliente , Humanos , Liberación de Fármacos , Comprimidos/química , Impresión Tridimensional , Tecnología Farmacéutica/métodos
9.
Eur J Pharm Biopharm ; 177: 211-223, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35835328

RESUMEN

Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.


Asunto(s)
Impresión Tridimensional , Tecnología Farmacéutica , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Humanos , Polvos , Comprimidos/química , Tecnología Farmacéutica/métodos
10.
Artículo en Inglés | MEDLINE | ID: mdl-34552669

RESUMEN

The aim of the current study was to investigate the dual effect of an amorphous solid dispersion generated by hot melt extrusion and the addition of pH modifiers on the solubility and stability of telmisartan. Hydroxypropyl methylcellulose acetate succinate L grade was used as a polymeric carrier and recrystallization inhibitor, and meglumine, sodium carbonate, or Neusilin S2 were incorporated as pH modifiers to generate a desirable microenvironmental pH in the solid dispersions. Differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy were incorporated to obtain the solid-state characterizations of telmisartan, and the results confirm a partial transformation of telmisartan to an amorphous state. An in vitro release study revealed that the transformation of telmisartan to an amorphous material improved its dissolution rate by 2-fold compared to pure drug and by up to 5-fold with the incorporation of pH modifiers. Results of the stability studies demonstrated that the samples have no significant degradation under accelerated stability conditions at 40 °C/75% RH.

11.
J Drug Deliv Sci Technol ; 52: 165-176, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31871490

RESUMEN

The objective of this study was to investigate the processability of AquaSolve™ hydroxypropyl methylcellulose acetate succinate L grade (HPMCAS LG) via hot-melt extrusion and to examine the effect of pressurized carbon dioxide (P-CO2) on the physicomechanical properties of efavirenz (EFA)-loaded extrudates. To optimize the process parameters and formulations, various physical mixtures of EFA (30%, 40%, and 50%, w/w) and HPMCAS LG (70%, 60%, and 50%, w/w), respectively, were extruded using a co-rotating twin-screw extruder with a standard screw configuration, with P-CO2 injected into zone 8 of the extruder. Thermal characterization of the extrudates was performed using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscopy was employed to study the morphology and porosity of the formulations. Notably, the macroscopic morphology changed to a foam-like structure by P-CO2 injection resulting in an increased specific surface area, porosity, and dissolution rate. Thus, HPMCAS LG extrusion, coupled with P-CO2 injection, yielded faster dissolving extrudates. Stability studies indicated that HPMCAS LG was able to physically and chemically stabilize the amorphous state of high-dose EFA. Furthermore, the milling efficiency of the extrudates produced with P-CO2 injection improved because of their increased porosity.

12.
AAPS PharmSciTech ; 19(1): 36-47, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28900868

RESUMEN

Organoleptic agents constitute an important niche in the field of pharmaceutical excipients. These agents encompass a range of additives responsible for coloring, flavoring, sweetening, and texturing formulations. All these agents have come to play a significant role in pharmaceuticals and cosmetics due to their ability to increase patient compliance by elevating a formulation's elegance and esthetics. However, it is essential to review their physical and chemical attributes before use, as organoleptic agents, similar to active pharmaceutical ingredients (APIs), are susceptible to physical and chemical instability leading to degradation. These instabilities can be triggered by API-organoleptic agent interaction, exposure to light, air and oxygen, and changes in pH and temperature. These organoleptic agent instabilities are of serious concern as they affect API and formulation stability, leading to API degradation or the potential for manifestation of toxicity. Hence, it is extremely critical to evaluate and review the physicochemical properties of organoleptic agents before their use in pharmaceuticals and cosmetics. This literature review discusses commonly used organoleptic agents in pharmaceutical and cosmeceutical formulations, their associated instabilities, and probable approaches to overcoming them.


Asunto(s)
Cosméticos , Excipientes/química , Colorantes/química , Estabilidad de Medicamentos , Aromatizantes/química , Edulcorantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...