Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733748

RESUMEN

Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.


Asunto(s)
ADN , ADN/química , ADN/metabolismo , Ligandos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Estructura Molecular , Conformación de Ácido Nucleico , Sitios de Unión , Relación Estructura-Actividad , Modelos Moleculares , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia Magnética , Línea Celular Tumoral
2.
Eur J Med Chem ; 271: 116440, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678825

RESUMEN

Antimicrobial and chemotherapy resistance are escalating medical problem of paramount importance. Yet, research for novel antimicrobial and anticancer agents remains lagging behind. With their reported medical applications, DNA minor groove binders (MGBs) are worthy of exploration. In this study, the approach of structure-based drug design was implemented to generate 11 MGB compounds including a novel class of bioactive alkyne-linked MGBs. The NCI screening protocol was utilized to evaluate the antitumor activity of the target MGBs. Furthermore, a variety of bactericidal, cytopathogenicity, MIC90, and cytotoxicity assays were carried out using these MGBs against 6 medically relevant bacteria: Salmonella enterica, Escherichia coli, Serratia marcescens, Bacillus cereus, Streptococcus pneumoniae and Streptococcus pyogenes. Moreover, molecular docking, molecular dynamic simulations, DNA melting, and isothermal titration calorimetry (ITC) analyses were utilized to explore the binding mode and interactions between the most potent MGBs and the DNA duplex d(CGACTAGTCG)2. NCI results showed that alkyne-linked MGBs (26 & 28) displayed the most significant growth inhibition among the NCI-60 panel. In addition, compounds MGB3, MGB4, MGB28, and MGB32 showed significant bactericidal effects, inhibited B. cereus and S. enterica-mediated cytopathogenicity, and exhibited low cytotoxicity. MGB28 and MGB32 demonstrated significant inhibition of S. pyogenes, whereas MGB28 notably inhibited S. marcescens and all four minor groove binders significantly inhibited B. cereus. The ability of these compounds to bind with DNA and distort its groove dimensions provides the molecular basis for the allosteric perturbation of proteins-DNA interactions by MGBs. This study shed light on the mechanism of action of MGBs and revealed the important structural features for their antitumor and antibacterial activities, which are important to guide future development of MGB derivatives as novel antibacterial and anticancer agents.


Asunto(s)
Antibacterianos , Antineoplásicos , ADN , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Relación Estructura-Actividad , ADN/química , ADN/metabolismo , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
3.
Biochim Biophys Acta Gen Subj ; 1867(6): 130347, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958685

RESUMEN

BACKGROUND: SIMR1281 is a potent anticancer lead candidate with multi- target activity against several proteins; however, its mechanism of action at the molecular level is not fully understood. Revealing the mechanism and the origin of multitarget activity is important for the rational identification and optimization of multitarget drugs. METHODS: We have used a variety of biophysical (circular dichroism, isothermal titration calorimetry, viscosity, and UV DNA melting), biochemical (topoisomerase I & II assays) and computational (molecular docking and MD simulations) methods to study the interaction of SIMR1281 with duplex DNA structures. RESULTS: The biophysical results revealed that SIMR1281 binds to dsDNA via an intercalation-binding mode with an average binding constant of 3.1 × 106 M-1. This binding mode was confirmed by the topoisomerases' inhibition assays and molecular modeling simulations, which showed the intercalation of the benzopyrane moiety between DNA base pairs, while the remaining moieties (thiazole and phenyl rings) sit in the minor groove and interact with the flanking base pairs adjacent to the intercalation site. CONCLUSIONS: The DNA binding characteristics of SIMR1281, which can disrupt/inhibit DNA function as confirmed by the topoisomerases' inhibition assays, indicate that the observed multi-target activity might originate from ligand intervention at nucleic acids level rather than due to direct interactions with multiple biological targets at the protein level. GENERAL SIGNIFICANCE: The findings of this study could be helpful to guide future optimization of benzopyrane-based ligands for therapeutic purposes.


Asunto(s)
ADN-Topoisomerasas de Tipo II , ADN , Simulación del Acoplamiento Molecular , ADN/química , Desnaturalización de Ácido Nucleico , Modelos Moleculares , Calorimetría/métodos , ADN-Topoisomerasas de Tipo II/metabolismo
4.
Antibiotics (Basel) ; 11(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884189

RESUMEN

The free-living amoeba Acanthamoeba castellanii is responsible for the central nervous infection granulomatous amoebic encephalitis and sight-threatening infection Acanthamoeba keratitis. Moreover, no effective treatment is currently present, and a combination drug therapy is used. In this study, twelve DNA minor groove binders (MGBs) were synthesized and tested for their antiamoebic activity via amoebicidal, encystation, excystation, and cytopathogenicity assays. It was found that the compounds MGB3, MGB6, MGB22, MGB24, and MGB16 significantly reduce amoeba viability to 76.20%, 59.45%, 66.5%, 39.32%, and 43.21%, respectively, in amoebicidal assays. Moreover, the compounds MGB6, MGB20, MGB22, MGB28, MGB30, MGB32, and MGB16 significantly inhibit Acanthamoeba cysts, leading to the development of only 46.3%, 39%, 30.3%, 29.6%, 27.8%, 41.5%, and 45.6% cysts. Additionally, the compounds MGB3, MGB4, MGB6, MGB22, MGB24, MGB28, MGB32, and MGB16 significantly reduce the re-emergence of cysts to trophozoites, with viable trophozoites being only 64.3%, 47.3%, 41.4%, 52.9%, 55.4%, 40.6%, 62.1%, and 51.7%. Moreover, the compounds MGB3, MGB4, and MGB6 exhibited the greatest reduction in amoeba-mediated host-cell death, with cell death reduced to 41.5%, 49.4%, and 49.5%. With the following determined, future in vivo studies can be carried out to understand the effect of the compounds on animal models such as mice.

5.
J Med Chem ; 62(22): 10423-10440, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31658809

RESUMEN

Lexitropsins are small molecules that bind to the minor groove of DNA as antiparallel dimers in a specific orientation. These molecules have shown therapeutic potential in the treatment of several diseases; however, the development of these molecules to target particular genes requires revealing the factors that dictate their preferred orientation in the minor grooves, which to date have not been investigated. In this study, a distinct structure (thzC) was carefully designed as an analog of a well-characterized lexitropsin (thzA) to reveal the factors that dictate the preferred binding orientation. Comparative evaluations of the biophysical and molecular modeling results of both compounds showed that the position of the dimethylaminopropyl group and the orientation of the amide links of the ligand with respect to the 5'-3'-ends; dictate the preferred orientation of lexitropsins in the minor grooves. These findings could be useful in the design of novel lexitropsins to selectively target specific genes.


Asunto(s)
ADN/química , Netropsina/análogos & derivados , Sitios de Unión , ADN/metabolismo , Dimerización , Enlace de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Peso Molecular , Netropsina/síntesis química , Netropsina/química , Netropsina/metabolismo , Conformación de Ácido Nucleico , Tiazoles/química , Tiazoles/metabolismo
6.
Sci Rep ; 9(1): 13126, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511569

RESUMEN

Metabolic profiling of cancer cells can play a vital role in revealing the molecular bases of cancer development and progression. In this study, gas chromatography coupled with mass spectrometry (GC-MS) was employed for the determination of signatures found in ER+/PR+ breast cancer cells derived from MCF-7 using different extraction solvents including: A, formic acid in water; B, ammonium hydroxide in water; C, ethyl acetate; D, methanol: water (1:1, v/v); and E, acetonitrile: water (1:1, v/v). The greatest extraction rate and diversity of metabolites occurs with extraction solvents A and E. Extraction solvent D showed moderate extraction efficiency, whereas extraction solvent B and C showed inferior metabolite diversity. Metabolite set enrichment analysis (MSEA) results showed energy production pathways to be key in MCF-7 cell lines. This study showed that mass spectrometry could identify key metabolites associated with cancers. The highest enriched pathways were related to energy production as well as Warburg effect pathways, which may shed light on how energy metabolism has been hijacked to encourage tumour progression and eventually metastasis in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cromatografía de Gases y Espectrometría de Masas/métodos , Extracción Líquido-Líquido/métodos , Metaboloma , Solventes/química , Acetonitrilos/química , Femenino , Formiatos/química , Humanos , Células MCF-7 , Metanol/química , Agua/química
7.
Molecules ; 24(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987096

RESUMEN

A simple, fast and highly sensitive RP-UPLC-MS/MS method was developed and validated for the simultaneous determination of sofosbuvir (SR) and its metabolite GS331007 in human plasma using ketotifen as an internal standard (IS). The separation was achieved on Acquity UPLC BEH C18 (50 × 2.1 mm, i.d. 1.7 µm, Waters, USA) column using acetonitrile:5 mM ammonium formate:0.1% formic acid (85:15:0.1% v/v/v) as a mobile phase at a flow rate of 0.35 mL/min in an isocratic elution. The Xevo TQD UPLC-MS/MS was operated under the multiple-reaction monitoring mode using positive electrospray ionization. Extraction with dichloromethane was used in the sample preparation. Method validation was performed as per the Food and Drug Administration (FDA) guidelines and the calibration curves of the proposed method were found to be linear in the range of 1-1000 ng/mL for SR and in the range of 10-1500 ng/mL for its metabolite (GS331007) with an elution time of 1.83 min. All validation parameters were within the acceptable range according to the bioanalytical methods validation guidelines. Furthermore, the obtained results of matrix effects indicate that ion suppression or enhancement from human plasma components was negligible under the optimized conditions. The proposed method can be applied in high-throughput analysis required for pharmacokinetic and bioequivalence studies in human samples.


Asunto(s)
Cromatografía Líquida de Alta Presión , Metabolómica , Sofosbuvir/farmacocinética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Estabilidad de Medicamentos , Humanos , Metabolómica/métodos , Metabolómica/normas , Estructura Molecular , Reproducibilidad de los Resultados , Sofosbuvir/química
8.
J Med Chem ; 62(2): 385-402, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30059627

RESUMEN

Understanding the thermodynamic and binding characteristics of DNA minor groove binders (MGBs) is important for the rational design and development of novel MGBs; however, there are contradicting results in the literature regarding the thermodynamic signature of MGBs. The expansion of the thermodynamic database for MGBs in the literature was encouraging to evaluate and critically test the previously reported hypothesis that MGB binding is mainly entropically driven. In this review, the thermodynamic data of a group of MGBs published in the literature were analyzed to better understand the factors that drive minor groove recognition. Analysis of the enthalpic and entropic contributions to the free energy of binding for 20 interactions from a total of 14 different compounds reveals that MGB binding can be driven by enthalpy, entropy, or by both and that is mainly dictated by ligand structural heterogeneity. These findings could be useful in the design of MGBs for therapeutic purposes.


Asunto(s)
ADN/química , Calorimetría , ADN/metabolismo , Diseño de Fármacos , Ligandos , Conformación de Ácido Nucleico , Termodinámica
9.
Saudi Pharm J ; 26(7): 1027-1034, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30416359

RESUMEN

In cancer therapy, exosomes efflux enhances resistance of cancer cells toward anticancer agents through mediating the transport of anticancer drugs outside the cells. In this study, a rapid, simple and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the determination of Doxorubicin (DOX) in exosomes of cancer cells and human plasma using Ketotifen as an internal standard (IS). Plasma samples spiked with DOX and two cancer cell lines (A549 & MCF-7) were incubated with different concentrations of DOX and IS. The analytes were then extracted with methanol after protein precipitation and the chromatographic separation was carried out using a C18 column, with a mixture of acetonitrile-water- formic acid (85:15:0.1%, v/v/v) as mobile phase. Multiple reaction monitoring (MRM) was utilized to monitor the protonated precursor to product ion transitions of m/z 544.25 > 397.16 and m/z 310.08 > 96.97 for the quantification of DOX and IS, respectively. The method was linear over ranges of 1-1000 ng/mL for DOX in plasma and 2-1000 ng/mL for DOX in exosome samples. The lower limit of quantification of this method was 1 ng/mL, 2 ng/mL and 2 ng/mL in human plasma, A549 & MCF-7 cells respectively. Intra- and inter day precision of all quality control concentrations were less than 10.33% and the accuracy values ranged from -4.82 to 12.60%. The optimized UPLC-MS/MS method proved to be fast, specific, simple and highly sensitive and was successfully applied for the estimation of DOX in the exosomes of cancer cells and plasma.

10.
Chembiochem ; 15(13): 1978-90, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25045155

RESUMEN

Solution-phase self-association characteristics and DNA molecular-recognition properties are reported for three close analogues of minor-groove-binding ligands from the thiazotropsin class of lexitropsin molecules; they incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPy(iPr) ThDp) shows similar self-assembly characteristics to thiazotropsin A (FoPyPy(iPr) ThDp), although it is engineered, by incorporation of imidazole in place of N-methyl pyrrole, to swap its DNA recognition target from 5'-ACTAGT-3' to 5'-ACGCGT-3'. Replacement of the formamide head group in thiazotropsin A by nicotinamide in AIK-18/51 results in a measureable difference in solution-phase self-assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self-assembled ligand aggregates and their complexes with their respective DNA targets are considered in the context of cluster targeting of DNA by minor-groove complexes.


Asunto(s)
ADN/efectos de los fármacos , Tiazoles/farmacología , Calorimetría , ADN/química , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , Tiazoles/química
11.
Biophys Chem ; 179: 1-11, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23714424

RESUMEN

Aggregated states have been alluded to for many DNA minor groove binders but details of the molecule-on-molecule relationship have either been under-reported or ignored. Here we report our findings from ITC and NMR measurements carried out with AIK-18/51, a compound representative of the thiazotropsin class of DNA minor groove binders. The free aqueous form of AIK-18/51 is compared with that found in its complex with cognate DNA duplex d(CGACTAGTCG)2. Molecular self-association of AIK-18/51 is consistent with anti-parallel, face-to-face dimer formation, the building block on which the molecule aggregates. This underlying structure is closely allied to the form found in the ligand's DNA complex. NMR chemical shift and diffusion measurements yield a self-association constant Kass=(61±19)×10(3)M(-1) for AIK-18/51 that fits with a stepwise self-assembly model and is consistent with ITC data. The deconstructed energetics of this assembly process are reported with respect to a design strategy for ligand/DNA recognition.


Asunto(s)
ADN/química , Tiazoles/química , Sitios de Unión , Difusión , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA