Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39017912

RESUMEN

Heart failure (HF) is defined as the inability of the heart to meet body oxygen demand requiring an elevation in left ventricular filling pressures (LVP) to compensate. LVP increase can be assessed in the cardiac catheterization laboratory, but this procedure is invasive and time-consuming to the extent that physicians rather rely on non-invasive diagnostic tools. In this work, we assess the feasibility to develop a novel machine-learning (ML) approach to predict clinically relevant LVP indices. Synchronized invasive (pressure-volume tracings) and non-invasive signals (ECG, pulse oximetry, and cardiac sounds) were collected from anesthetized, closed-chest Göttingen minipigs. Animals were either healthy or had HF with reduced ejection fraction and circa 500 heartbeats were included in the analysis for each animal. The ML algorithm showed excellent prediction of LVP indices estimating, for instance, the end-diastolic pressure with a R2 of 0.955. This novel ML algorithm could assist clinicians in the care of HF patients.

2.
JAMA Cardiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046727

RESUMEN

Importance: Increases in pulmonary capillary wedge pressure (PCWP) during exercise reduce pulmonary artery (PA) compliance, increase pulsatile right ventricular (RV) afterload, and impair RV-PA coupling in patients with heart failure with preserved ejection fraction (HFpEF). The effects of the sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin on pulmonary vascular properties and RV-PA coupling are unknown. Objective: To test the effect of dapagliflozin on right ventricular performance and pulmonary vascular load during exertion in HFpEF. Design, Setting, and Participants: Evaluation of the Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure With Preserved Ejection Fraction (CAMEO-DAPA) randomized clinical trial demonstrated improvement in PCWP at rest and exercise over 24 weeks with dapagliflozin compared with placebo with participants recruited between February 2021 and May 2022. This secondary analysis evaluates the effects of dapagliflozin on pulsatile pulmonary vascular load and RV-PA coupling using simultaneous echocardiography and high-fidelity invasive hemodynamic testing with exercise. This was a single-center study including patients with hemodynamically confirmed HFpEF with exercise PCWP of 25 mm Hg or greater. Interventions: Dapagliflozin or placebo for 24 weeks. Main Outcomes and Measures: Pulsatile pulmonary vascular load (PA compliance and elastance) and right ventricular performance (PA pulsatility index, RV systolic velocity [s']/PA mean) during rest and exercise. Results: Among 37 randomized participants (mean [SD] age, 67.4 [8.5] years; 25 female [65%]; mean [SD] body mass index, 34.9 [6.7]; calculated as weight in kilograms divided by height in meters squared), there was no effect of dapagliflozin on PA loading or RV-PA interaction at rest. However, with exercise, dapagliflozin improved PA compliance (placebo-corrected mean difference, 0.57 mL/mm Hg; 95% CI, 0.11-1.03 mL/mm Hg; P = .02) and decreased PA elastance (stiffness; -0.17 mm Hg/mL; 95% CI, -0.28 to -0.07 mm Hg/mL; P = .001). RV function during exercise improved, with increase in PA pulsatility index (0.33; 95% CI, 0.08-0.59; P = .01) and increase in exercise RV s' indexed to PA pressure (0.09 cm·s-1/mm Hg; 95% CI, 0.02-0.16 cm·s-1/mm Hg; P = .01). Improvements in pulsatile RV load and RV-PA coupling were correlated with reduction in right atrial (RA) pressure (PA elastance Pearson r = 0.55; P =.008; RV s'/PA elastance Pearson r = -0.60; P =.002) and PCWP (PA elastance Pearson r = 0.58; P <.001; RV s'/PA elastance Pearson r = -0.47; P = .02). Dapagliflozin increased resistance-compliance time (dapagliflozin, median [IQR] change, 0.06 [0.03-0.15] seconds; placebo, median [IQR] change, 0.01 [-0.02 to 0.05] seconds; P =.046), resulting in higher PA compliance for any exercise pulmonary vascular resistance. Conclusions and Relevance: Results of this randomized clinical trial reveal that treatment with dapagliflozin for 24 weeks reduced pulsatile pulmonary vascular load and enhanced dynamic RV-PA interaction during exercise in patients with HFpEF, findings that are related to the magnitude of PCWP reduction. Benefits on dynamic right ventricular-pulmonary vascular coupling may partially explain the benefits of SGLT2 inhibitors in HFpEF. Trial Registration: ClinicalTrials.gov Identifier: NCT04730947.

3.
J Am Coll Cardiol ; 83(1): 47-59, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171710

RESUMEN

BACKGROUND: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. OBJECTIVES: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. METHODS: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. RESULTS: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. CONCLUSIONS: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.


Asunto(s)
Insuficiencia Cardíaca , Animales , Enfermedad Crónica , Pulmón , Péptidos , Volumen Sistólico , Porcinos , Porcinos Enanos , Función Ventricular Izquierda
4.
Eur J Heart Fail ; 26(3): 564-577, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38156712

RESUMEN

AIMS: We aimed to clarify the extent to which cardiac and peripheral impairments to oxygen delivery and utilization contribute to exercise intolerance and risk for adverse events, and how this relates to diversity and multiplicity in pathophysiologic traits. METHODS AND RESULTS: Individuals with heart failure with preserved ejection fraction (HFpEF) and non-cardiac dyspnoea (controls) underwent invasive cardiopulmonary exercise testing and clinical follow-up. Haemodynamics and oxygen transport responses were compared. HFpEF patients were then categorized a priori into previously-proposed, non-exclusive descriptive clinical trait phenogroups, including cardiometabolic, pulmonary vascular disease, left atrial myopathy, and vascular stiffening phenogroups based on clinical and haemodynamic profiles to contrast pathophysiology and clinical risk. Overall, patients with HFpEF (n = 643) had impaired cardiac output reserve with exercise (2.3 vs. 2.8 L/min, p = 0.025) and greater reliance on peripheral oxygen extraction augmentation (4.5 vs. 3.8 ml/dl, p < 0.001) compared to dyspnoeic controls (n = 219). Most (94%) patients with HFpEF met criteria for at least one clinical phenogroup, and 67% fulfilled criteria for multiple overlapping phenogroups. There was greater impairment in peripheral limitations in the cardiometabolic group and greater cardiac output limitations and higher pulmonary vascular resistance during exertion in the other phenogroups. Increasing trait multiplicity within a given patient was associated with worse exercise haemodynamics, poorer exercise capacity, lower cardiac output reserve, and greater risk for heart failure hospitalization or death (hazard ratio 1.74, 95% confidence interval 1.08-2.79 for 0-1 vs. ≥2 phenogroup traits present). CONCLUSIONS: Though cardiac output response to exercise is limited in patients with HFpEF compared to those with non-cardiac dyspnoea, the relative contributions of cardiac and peripheral limitations vary with differing numbers and types of clinical phenotypic traits present. Patients fulfilling criteria for greater multiplicity and diversity of HFpEF phenogroup traits have poorer exercise capacity, worsening haemodynamic perturbations, and greater risk for adverse outcome.


Asunto(s)
Prueba de Esfuerzo , Tolerancia al Ejercicio , Insuficiencia Cardíaca , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/fisiopatología , Tolerancia al Ejercicio/fisiología , Femenino , Masculino , Volumen Sistólico/fisiología , Anciano , Persona de Mediana Edad , Prueba de Esfuerzo/métodos , Consumo de Oxígeno/fisiología , Fenotipo , Disnea/fisiopatología , Disnea/etiología , Hemodinámica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...