Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci Health B ; 48(12): 1049-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24007482

RESUMEN

Sorption and desorption of aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropylpyrimidine-4-carboxylic acid) were compared to that of the structurally similar herbicide picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) in three soils of differing origin and composition to determine if picloram data is representative of aminocyclopyrachlor behavior in soil. Aminocyclopyrachlor and picloram batch sorption data fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram (1/n = 0.80-0.90). Freundlich sorption coefficients (K f) for aminocyclopyrachlor were lowest in the eroded and depositional Minnesota soils (0.04 and 0.12 µmol ((1-1/n)) L(1/n) kg(-1)) and the highest in Molokai soil (0.31 µmol ((1-1/n)) L(1/n) kg(-1)). For picloram, K f was lower in the eroded (0.28 µmol ((1-1/n)) L(1/n) kg(-1)) as compared to the depositional Minnesota soil (0.75 µmol ((1-1/n)) L(1/n) kg(-1)). Comparing soil to soil, K f for picloram was consistently higher than those found for aminocyclopyrachlor. Desorption of aminocyclopyrachlor and picloram was hysteretic on all three soils. With regard to the theoretical leaching potential based on groundwater ubiquity score (GUS), leaching potential of both herbicides was considered to be similar. Aminocyclopyrachlor would be ranked as leacher in all three soils if t1/2 was > 12.7 days. To be ranked as non-leacher in all three soils, aminocyclopyrachlor t1/2 would have to be <3.3 days. Calculated half-life that would rank picloram as leacher was calculated to be ∼15.6 d. Using the current information for aminocycloprachlor, or using picloram data as representative of aminocycloprachlor behavior, scientists can now more accurately predict the potential for offsite transport of aminocycloprachlor.


Asunto(s)
Herbicidas/química , Picloram/química , Pirimidinas/química , Contaminantes del Suelo/química , Adsorción , Agua Subterránea/análisis , Semivida , Suelo/química , Contaminantes Químicos del Agua/química
2.
J Agric Food Chem ; 59(24): 13096-101, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22070170

RESUMEN

Indaziflam, a new alkylazine herbicide that inhibits cellulose biosynthesis, is under current development for soil applications in perennial crops and nonagricultural areas. Sorption and desorption of indaziflam in six soils from Brazil and three soils from the United States, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in <24 h. The Freundlich equation described the sorption behavior of the herbicide for all soils (R(2) > 0.99). K(f) values of the Brazilian oxisols ranged from 4.66 to 29.3, and 1/n values were ≥ 0.95. Sorption was positively correlated to %OC and clay contents. U.S. mollisol K(f) values ranged from 6.62 to 14.3; 1/n values for sorption were ≥ 0.92. K(f) values from mollisols were also positively correlated with %OC. These results suggest that indaziflam potential mobility, based solely on its sorption coefficients, would range from moderate to low in soil. Desorption was hysteretic on all soils, further decreasing its potential mobility for offsite transport.


Asunto(s)
Agricultura , Herbicidas/química , Indenos/química , Suelo/química , Triazinas/química , Adsorción , Brasil , Fenómenos Químicos , Contaminantes del Suelo/química , Estados Unidos
3.
J Agric Food Chem ; 59(8): 4045-50, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21384924

RESUMEN

Aminocyclopyrachlor sorption/desorption was investigated in 14 soils from Brazil, representing a range of pH, and organic carbon (OC) and clay contents. The Freundlich equation adequately described behavior of aminocyclopyrachlor in soil. Freundlich sorption coefficient (K(f)) values ranged from 0.06 to 1.64 and 1/n values for ranged from 0.9 to 1.0. Sorption was correlated to OC (K(f,oc) ranged from 11 to 64) and clay contents. The lowest sorption was found for soils with very low OC contents (0.50-0.65%) and loamy-sand to sand textures. The 1/n values for desorption were lower than those observed for sorption, suggesting that aminocyclopyrachlor sorption by soil was not reversible; hysteresis coefficients ranged from 0.13 to 0.74. The results suggest that although aminocyclopyrachlor would be very mobile based on its sorption coefficients, its potential depth of leaching may be overestimated due to the hysteretic desorption.


Asunto(s)
Herbicidas/química , Pirimidinas/química , Contaminantes del Suelo/química , Brasil , Cinética
4.
J Environ Sci Health B ; 44(8): 757-63, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20183087

RESUMEN

This research was aimed at understanding the dynamics of the herbicides diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], imazapic [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5-methylnicotinic acid] and isoxaflutole [5-cyclopropyl-4-(2-methanesulfonyl-4-trifluoromethyl benzoyl)isoxazole] in two soils of different physico-chemical properties. To accomplish such intent, several greenhouse experiments were run. The bioavailability of diuron (0; 1.6 and 3.2 kg ha(-1)), imazapic (0; 98 and 122.5 g ha(-1)) and isoxaflutole (0; 35 and 70 g ha(-1)) was measured in samples from a sandy loam soil and a clay soil, by sowing a bioindicator (Brachiaria decumbens), at 0, 25, 50, 75 and 100 days after herbicides application (DAA). Diuron was very stable in clay soil, providing control equal to or higher than 92% of bioindicator, up to 100 DAA, as assumed by biomass accumulation. No differential effect was observed in sandy loam soil, even when 2x labeled rate were applied. Imazapic provided a short bioavailability in relation to B. decumbens, independent of rates applied. The persistence of isoxaflutole was longer in clay soil (28 to 30 days).


Asunto(s)
Diurona/metabolismo , Herbicidas/metabolismo , Imidazoles/metabolismo , Isoxazoles/metabolismo , Ácidos Nicotínicos/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/análisis , Biodegradación Ambiental , Disponibilidad Biológica , Biomasa , Diurona/química , Herbicidas/química , Imidazoles/química , Residuos Industriales , Isoxazoles/química , Ácidos Nicotínicos/química , Contaminantes del Suelo/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...