Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39088171

RESUMEN

The Tetrahedron approach is a new environmental tool adapted to assess the sustainability of anthropogenic processes. This tool is based on a four-step methodology that includes (a) the identification of critical parameters, (b) evaluation through the Tetrahedron Parameter Global Evaluator, (c) construction of a tetrahedron diagram based on the final scores and (d) quantitative estimation of the global sustainability. The Tetrahedron incorporates various aspects of sustainability, including economic, social and environmental factors, and provides a comprehensive framework for evaluating the impact of human activities. This article presents the methodology and application of the Tetrahedron in determining the sustainability of five case studies: CO2 capture, unconventional methanol production, the Solvay process, CO2-alcoholic fermentation process strategy and the CO2-Rumen fermentation process strategy. The results demonstrate the Tetrahedron as an effective and reliable tool to quantify the sustainability of anthropogenic processes and to promote sustainable practices across various industries and sectors. The Tetrahedron offers several advantages over other environmental assessment tools, including holistic approach, simplicity and flexibility.

2.
Antibiotics (Basel) ; 13(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39061291

RESUMEN

The guanidine core has been one of the most studied functional groups in medicinal chemistry, and guanylation reactions are powerful tools for synthesizing this kind of compound. In this study, a series of five guanidine-core small molecules were obtained through guanylation reactions. These compounds were then evaluated against three different strains of Escherichia coli, one collection strain from the American Type Culture Collection (ATCC) of E. coli ATCC 35218, and two clinical extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates (ESBL1 and ESBL2). Moreover, three different strains of Pseudomonas aeruginosa were studied, one collection strain of P. aeruginosa ATCC 27853, and two clinical multidrug-resistant isolates (PA24 and PA35). Among Gram-positive strains, three different strains of Staphylococcus aureus, one collection strain of S. aureus ATCC 29213, and two clinical methicillin-resistant S. aureus (MRSA1 and MRSA2) were evaluated. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) experiments were reported, and the drop plate (DP) method was used to determine the number of viable suspended bacteria in a known beaker volume. The results from this assessment suggest that guanidine-core small molecules hold promise as therapeutic alternatives for treating infections caused by clinical Gram-negative and Gram-positive bacteria, highlighting the need for further studies to explore their potential. The results from this assessment suggest that the chemical structure of CAPP4 might serve as the basis for designing more active guanidine-based antimicrobial compounds, highlighting the need for further studies to explore their potential.

3.
Biomed Pharmacother ; 178: 117165, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059354

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide. Recent experiments suggest that CDK12 can be a good therapeutic target in CRC, and therefore, novel inhibitors targeting this protein are currently in preclinical development. Lipid-based formulations of chemical entities have demonstrated the ability to enhance activity while improving the safety profile. In the present work, we explore the antitumor activity of a new CDK12 inhibitor (CDK12-IN-E9, CDK12i) and its lipid-based formulation (LP-CDK12i) in CRC models, to increase efficacy. SW620, SW480 and HCT116 CRC cell lines were used to evaluate the inhibitor and the liposomal formulation using MTT proliferation assay, 3D invasion cultures, flow cytometry, Western blotting and immunofluorescence experiments. Free-cholesterol liposomal formulations of CDK12i (LP-CDK12i) were obtained by solvent injection method and fully characterized by size, shape, polydispersity, encapsulation efficiency, and release profile and stability assessments. LP-CDK12i induced a higher antiproliferative effect compared with CDK12i as a free agent. The IC50 value was lower across all cell lines tested, leading to a reduction in cell proliferation and the formation of 3D structures. Evaluation of apoptosis revealed an increase in cell death, while biochemical studies demonstrated modifications of apoptosis and DNA damage components. In conclusion, we confirm the role of targeting CDK12 for the treatment of CRC and describe, for the first time, a liposomal formulation of a CDK12i with higher antiproliferative activity compared with the free compound.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Quinasas Ciclina-Dependientes , Liposomas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Células HCT116 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
4.
J Colloid Interface Sci ; 674: 186-193, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925064

RESUMEN

The effective measurement of temperature in living systems at the nano and microscopic scales continues to be a challenge to this day. Here, we study the use of 2-(anthracen-2-yl)-1,3-diisopropylguanidine, 1, as a nanothermometer based on fluorescence lifetime measurements and its bioimaging applications. In aqueous solution, 1 is shown in aggregated form and the equilibrium between the two main aggregate types (T-shaped and π-π) is highly sensitive to the temperature. The heating of the medium shifts the equilibrium toward the formation of highly emissive T-shaped aggregates. This species shows a high fluorescence emission and a long lifetime in comparison with the π-π aggregates and the freé monomer. A linear relationship between the fluorescence lifetime and the temperature both in aqueous solution and in a synthetic intracellular buffer was found. Fluorescence lifetime imaging microscopy (FLIM) also showed a linear relationship between lifetime and temperature with an excellent sensitivity in MCF7 breast cancer cells, which opens the door for its potential use as FLIM nanothermometer in the biomedical field.


Asunto(s)
Antracenos , Humanos , Antracenos/química , Células MCF-7 , Microscopía Fluorescente , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Termómetros , Fluorescencia , Temperatura , Imagen Óptica
5.
J Inorg Biochem ; 253: 112486, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38266323

RESUMEN

The modular synthesis of the heteroscorpionate core is explored as a tool for the rapid development of ruthenium-based therapeutic agents. Starting with a series of structurally diverse alcohol-NN ligands, a family of heteroscorpionate-based ruthenium derivatives was synthesized, characterized, and evaluated as an alternative to platinum therapy for breast cancer therapy. In vitro, the antitumoral activity of the novel derivatives was assessed in a series of breast cancer cell lines using UNICAM-1 and cisplatin as metallodrug control. Through this approach, a bimetallic heteroscorpionate-based metallodrug (RUSCO-2) was identified as the lead compound of the series with an IC50 value range as low as 3-5 µM. Notably, RUSCO-2 was found to be highly cytotoxic in TNBC cell lines, suggesting a mode of action independent of the receptor status of the cells. As a proof of concept and taking advantage of the luminescent properties of one of the complexes obtained, uptake was monitored in human breast cancer MCF7 cell lines by fluorescence lifetime imaging microscopy (FLIM) to reveal that the compound is evenly distributed in the cytoplasm and that the incorporation of the heteroscorpionate ligand protects it from aqueous processes, conversion in another entity, or the loss of the chloride group. Finally, ROS studies were conducted, lipophilicity was estimated, the chloride/water exchange was studied, and stability studies in simulated biological media were carried out to propose structure-activity relationships.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Rutenio , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Rutenio/farmacología , Rutenio/uso terapéutico , Ligandos , Cloruros , Células MCF-7 , Línea Celular Tumoral
6.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762123

RESUMEN

The modular synthesis of the guanidine core by guanylation reactions using commercially available ZnEt2 as a catalyst has been exploited as a tool for the rapid development of antitumoral guanidine candidates. Therefore, a series of phenyl-guanidines were straightforwardly obtained in very high yields. From the in vitro assessment of the antitumoral activity of such structurally diverse guanidines, the guanidine termed ACB3 has been identified as the lead compound of the series. Several biological assays, an estimation of AMDE values, and an uptake study using Fluorescence Lifetime Imaging Microscopy were conducted to gain insight into the mechanism of action. Cell death apoptosis, induction of cell cycle arrest, and reduction in cell adhesion and colony formation have been demonstrated for the lead compound in the series. In this work, and as a proof of concept, we discuss the potential of the catalytic guanylation reactions for high-throughput testing and the rational design of guanidine-based cancer therapeutic agents.


Asunto(s)
Guanidinas , Neoplasias , Humanos , Guanidina , Guanidinas/farmacología , Apoptosis , Muerte Celular , Neoplasias/tratamiento farmacológico
7.
ACS Appl Mater Interfaces ; 15(38): 44786-44795, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37699547

RESUMEN

AIEgens have emerged as a promising alternative to molecular rotors in bioimaging applications. However, transferring the concept of aggregation-induced emission (AIE) from solution to living systems remains a challenge. Given the highly heterogeneous nature and the compartmentalization of the cell, different approaches are needed to control the self-assembly within the crowded intricate cellular environment. Herein, we report for the first time the self-assembly mechanism of an anthracene-guanidine derivative (AG) forming the rare and highly emissive T-shaped dimer in breast cancer cell lines as a proof of concept. This process is highly sensitive to the local environment in terms of polarity, viscosity, and/or water quantity that should enable the use of the AG as a fluorescence lifetime imaging biosensor for intracellular imaging of cellular structures and the monitoring of intracellular state parameters. Different populations of the monomer and T-shaped and π-π dimers were observed in the cell membrane, cytoplasm, and nucleoplasm, related to the local viscosity and presence of water. The T-shaped dimer is formed preferentially in the nucleus because of the higher density and viscosity compared to the cytoplasm. The present results should serve as a precursor for the development of new design strategies for molecular systems for a wide range of applications such as cell viscosity, density, or temperature sensing and imaging.


Asunto(s)
Antracenos , Imagen Óptica , Citoplasma , Membrana Celular , Polímeros , Agua
8.
J Anim Sci Biotechnol ; 14(1): 106, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37559077

RESUMEN

BACKGROUND: Artificial insemination (AI) is a routine breeding technology in animal reproduction. Nevertheless, the temperature-sensitive nature and short fertile lifespan of ram sperm samples hamper its use in AI. In this sense, nanotechnology is an interesting tool to improve sperm protection due to the development of nanomaterials for AI, which could be used as delivery vehicles. In this work, we explored the feasibility of vitamin E nanoemulsion (NE) for improving sperm quality during transport. RESULTS: With the aim of evaluating this proposal, ejaculates of 7 mature rams of Manchega breed were collected by artificial vagina and extended to 60 × 106 spz/mL in Andromed®. Samples containing control and NE (12 mmol/L) with and without exogenous oxidative stress (100 µmol/L Fe2+/ascorbate) were stored at 22 and 15 ºC and motility (CASA), viability (YO-PRO/PI), acrosomal integrity (PNA-FITC/PI), mitochondrial membrane potential (Mitotracker Deep Red 633), lipoperoxidation (C11 BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (SCSA®) monitored during 96 h. Our results show that NE could be used to maintain ram spermatozoa during transport at 15 and 22 ºC for up to 96 h, with no appreciable loss of kinematic and physiological characteristics of freshly collected samples. CONCLUSIONS: The storage of ram spermatozoa in liquid form for 2-5 d with vitamin E nanoemulsions may lead more flexibility to breeders in AI programs. In view of the potential and high versatility of these nanodevices, further studies are being carried out to assess the proposed sperm preservation medium on fertility after artificial insemination.

9.
J Funct Biomater ; 14(6)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37367283

RESUMEN

Piperine (PIP), a compound found in Piper longum, has shown promise as a potential chemotherapeutic agent for breast cancer. However, its inherent toxicity has limited its application. To overcome this challenge, researchers have developed PIP@MIL-100(Fe), an organic metal-organic framework (MOF) that encapsulates PIP for breast cancer treatment. Nanotechnology offers further treatment options, including the modification of nanostructures with macrophage membranes (MM) to enhance the evasion of the immune system. In this study, the researchers aimed to evaluate the potential of MM-coated MOFs encapsulated with PIP for breast cancer treatment. They successfully synthesized MM@PIP@MIL-100(Fe) through impregnation synthesis. The presence of MM coating on the MOF surface was confirmed through SDS-PAGE analysis, which revealed distinct protein bands. Transmission electron microscopy (TEM) images demonstrated the existence of a PIP@MIL-100(Fe) core with a diameter of around 50 nm, surrounded by an outer lipid bilayer layer measuring approximately 10 nm in thickness. Furthermore, the researchers evaluated the cytotoxicity indices of the nanoparticles against various breast cancer cell lines, including MCF-7, BT-549, SKBR-3, and MDA. The results demonstrated that the MOFs exhibited between 4 and 17 times higher cytotoxicity (IC50) in all four cell lines compared to free PIP (IC50 = 193.67 ± 0.30 µM). These findings suggest that MM@PIP@MIL-100(Fe) holds potential as an effective treatment for breast cancer. The study's outcomes highlight the potential of utilizing MM-coated MOFs encapsulated with PIP as an innovative approach for breast cancer therapy, offering improved cytotoxicity compared to free PIP alone. Further research and development are warranted to explore the clinical translation and optimize the efficacy and safety of this treatment strategy.

10.
Front Cell Infect Microbiol ; 13: 1100947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051297

RESUMEN

Staphylococcus aureus is one of the species with the greatest clinical importance and greatest impact on public health. In fact, methicillin-resistant S. aureus (MRSA) is considered a pandemic pathogen, being essential to develop effective medicines and combat its rapid spread. This study aimed to foster the translation of clinical research outcomes based on metallodrugs into clinical practice for the treatment of MRSA. Bearing in mind the promising anti-Gram-positive effect of the heteroscorpionate ligand 1,1'-(2-(4-isopropylphenyl)ethane-1,1-diyl)bis(3,5-dimethyl-1H-pyrazole) (2P), we propose the coordination of this compound to platinum as a clinical strategy with the ultimate aim of overcoming resistance in the treatment of MRSA. Therefore, the novel metallodrug 2P-Pt were synthetized, fully characterized and its antibacterial effect against the planktonic and biofilm state of S. aureus evaluated. In this sense, three different strains of S. aureus were studied, one collection strain of S. aureus sensitive to methicillin and two clinical MRSA strains. To appraise the antibacterial activity, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) were determined. Moreover, successful outcomes on the development of biofilm in a wound-like medium were obtained. The mechanism of action for 2P-Pt was proposed by measuring the MIC and MBC with EDTA (cation mediated mechanism) and DMSO (exogenous oxidative stress mechanism). Moreover, to shed light on the plausible antistaphylococcal mechanism of this novel platinum agent, additional experiments using transmission electron microscopy were carried out. 2P-Pt inhibited the growth and eradicated the three strains evaluated in the planktonic state. Another point worth stressing is the inhibition in the growth of MRSA biofilm even in a wounded medium. The results of this work support this novel agent as a promising therapeutic alternative for preventing infections caused by MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Platino (Metal)/farmacología , Antibacterianos/farmacología , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas
11.
J Mater Chem B ; 11(2): 316-324, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36353924

RESUMEN

Population growth, depletion of world resources and persistent toxic chemical production underline the need to seek new smart materials from inexpensive, biodegradable, and renewable feedstocks. Hence, "metal-free" ring-opening copolymerization to convert biomass carvone-based monomers into non-conventional luminescent biopolymers is considered a sustainable approach to achieve these goals. The non-conventional emission was studied in terms of steady-state and time-resolved spectroscopy in order to unravel the structure-properties for different carvone-based copolymers. The results highlighted the importance of the final copolymer folding structure as well as its environment in luminescent behavior (cluster-triggered emission). In all cases, their luminescent behavior is sensitive to small temperature fluctuations (where the minimum detected temperature is Tm ∼ 2 °C and relative sensitivity is Sr ∼ 6% °C) even at the microscopic scale, which endows these materials a great potential as thermosensitive smart polymers for photothermal imaging.


Asunto(s)
Luminiscencia , Polímeros , Polímeros/química , Biomasa , Monoterpenos Ciclohexánicos
12.
Antioxidants (Basel) ; 11(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36290711

RESUMEN

The advent of nanotechnology in the field of animal reproduction has led to the development of safer and more efficient therapies. The use of nanotechnology allows us to avoid the detrimental effects of certain traditional antioxidants, such as Vitamin E. Its hydrophobic nature makes mandatory the use of organic solvents, which are toxic to sperm cells. This study aims to evaluate the efficiency of vitamin E nanoemulsions (NE) on ram (Ovis aries) spermatozoa. For this purpose, the effect of three NE concentrations (6, 12, and 24 mM) were assessed on sperm of 10 mature rams of the Manchega breed. Sperm samples were collected by artificial vagina, pooled, and diluted in Bovine Gamete Medium. The samples were stored at 37 °C and assessed at 0, 4, 8, and 24 h under oxidative stress conditions (100 µM Fe2+/ascorbate). Motility (CASA), viability (YO-PRO/IP), acrosomal integrity (PNA-FITC/IP), mitochondrial membrane potential (Mitotracker Deep Red 633), lipoperoxidation (C11 BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (SCSA®®) were assessed. A linear mixed-effects models were used to analyze the effects of time, NE, and oxidant (fixed factors) on sperm parameters, and a random effect on the male was also included in the model with Tukey's post hoc test. Protection of ram spermatozoa with NE resulted in a more vigorous motility under oxidative stress conditions with respect Control and Free vitamin E, while preventing the deleterious effects of oxidative stress coming from the production of free radicals and lipid peroxidation. These results ascertain the high relevance of the use of delivery systems for sperm physiology preservation in the context of assisted reproduction techniques.

13.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139634

RESUMEN

BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.

14.
Pharmaceutics ; 14(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36015299

RESUMEN

The incessant developments in the pharmaceutical and biomedical fields, particularly, customised solutions for specific diseases with targeted therapeutic treatments, require the design of multicomponent materials with multifunctional capabilities. Biodegradable polymers offer a variety of tailored physicochemical properties minimising health adverse side effects at a low price and weight, which are ideal to design matrices for hybrid materials. PLAs emerge as an ideal candidate to develop novel materials as are endowed withcombined ambivalent performance parameters. The state-of-the-art of use of PLA-based materials aimed at pharmaceutical and biomedical applications is reviewed, with an emphasis on the correlation between the synthesis and the processing conditions that define the nanostructure generated, with the final performance studies typically conducted with either therapeutic agents by in vitro and/or in vivo experiments or biomedical devices.

15.
Pharmaceutics ; 14(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35745711

RESUMEN

A series of bionanocomposites composed of shark gelatin hydrogels and PLA nanoparticles featuring different nanostructures were designed to generate multifunctional drug delivery systems with tailored release rates required for personalized treatment approaches. The global conception of the systems was considered from the desired customization of the drug release while featuring the viscoelastic properties needed for their ease of storage and posterior local administration as well as their biocompatibility and cell growth capability for the successful administration at the biomolecular level. The hydrogel matrix offers the support to develop a direct thermal method to convert the typical kinetic trapped nanostructures afforded by the formulation method whilst avoiding the detrimental nanoparticle agglomeration that diminishes their therapeutic effect. The nanoparticles generated were successfully formulated with two different antitumoral compounds (doxorubicin and dasatinib) possessing different structures to prove the loading versatility of the drug delivery system. The bionanocomposites were characterized by several techniques (SEM, DLS, RAMAN, DSC, SAXS/WAXS and rheology) as well as their reversible sol-gel transition upon thermal treatment that occurs during the drug delivery system preparation and the thermal annealing step. In addition, the local applicability of the drug delivery system was assessed by the so-called "syringe test" to validate both the storage capability and its flow properties at simulated physiological conditions. Finally, the drug release profiles of the doxorubicin from both the PLA nanoparticles or the bionanocomposites were analyzed and correlated to the nanostructure of the drug delivery system.

16.
Mol Cancer ; 21(1): 67, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35249548

RESUMEN

Degradation of targeted proteins using proteolysis targeting chimeras (PROTACs) has gained momentum. A PROTAC is a bifunctional molecule that consists of three parts: a ligand that interacts with the protein to be degraded, another ligand that binds to an E3 ubiquitin ligase and a linker that connects both. Identification of the right proteins as targets to be degraded and a ligase that is highly expressed in tumors compare with normal tissue is mandatory, as can augment efficacy reducing toxicity. In this article we review the current development stage of PROTACs in cancer to categorize the best PROTAC construction. Targets including BCL2, CDK4 and MCL1 were highly expressed in all tumors; MCL1 was significantly increased in breast cancer and lung adenocarcinoma and CDK4 in colon adenocarcinoma. Degradation of CDK9, AURKA or PLK1, followed by BCL2, MCL1, PTPN11, BRD4, PTK2, showed a high dependency. Most ligases evaluated were not highly present in tumors except for MDM2 in breast, lung, prostate and gastric cancer. In non-transformed tissue MDM2 was the most abundant ligase, followed by cIAP and CRBN, and those with low expression included XIAP and VHL. MDM2 ligase coupled with inhibitors of the targets BCL2, BRD4, CDK9, PLK1 and MCL1 in stomach tumor, and MDM2 with PIK3C3 inhibitors in breast cancer, seems to be the best therapeutic strategy. Our results suggest potential options for the design of PROTACS in specific medical indications.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Neoplasias del Colon , Femenino , Humanos , Proteínas de Ciclo Celular/metabolismo , Ligandos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
Laryngoscope Investig Otolaryngol ; 7(1): 283-290, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35155809

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the in vitro antibacterial effects of a p-Cymene-based bis(pyrazolyl)methane derivative (SC-19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE). METHODS: Eighteen swab specimens were collected from patients aged over 18 years diagnosed with OE within at least 7 days of symptom onset, contaminated by only one bacterium type: Pseudomonas aeruginosa (n = 5); Staphylococcus aureus (n = 8); Klebsiella aerogenes (n = 2); Serratia marcescens (n = 1); Morganella morganii (n = 2). To appraise antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays were run at different SC-19 concentrations. RESULTS: When using SC-19, S. aureus strains showed less bacterial growth, but no bactericidal effect was observed. The MIC and MBC of SC-19 were 62.5 and 2000 µg/ml against S. aureus and were >2000 µg/ml against the other isolates obtained from OE, respectively. In addition, the MBICs and MBECs of SC-19 against S. aureus were 125 and >2000 µg/ml, respectively. CONCLUSION: Nowadays the acquired antibiotic resistance phenomenon has stimulated research into novel and more efficient therapeutic agents. Hence, we report that, helped by the structural diversity fostered herein by a range of bis(pyrazolyl)methane derivatives, SC-19 can be a promising alternative therapeutic option for treating OE caused by S. aureus given the observed effects on both planktonic state and biofilm. LEVEL OF EVIDENCE: IV.

18.
Polymers (Basel) ; 14(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054639

RESUMEN

Stereo-diblock copolymers of high molecular weight polylactide (PLA) were synthetized by the one pot-sequential addition method assisted by a heteroscorpionate catalyst without the need of a co-initiator. The alkyl zinc organometallic heteroscorpionate derivative (Zn(Et)(κ3-bpzteH)] (bpzteH = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide) proved to assist in the mechanism of reaction following a coordination-insertion process. Kinetic studies along with the linear correlation between monomer and number average molecular weight (Mn) conversion, and the narrow polydispersities supported the truly living polymerization character of the initiator, whereas matrix-assisted laser desorption/Ionization-time of flight (MALDI-TOF) studies showed a very low order of transesterification. The high stereo-control attained for the afforded high molecular weight derivatives was revealed by homonuclear decoupled 1H NMR spectra and polarimetry measurements. The nanostructure of the PLA derivatives was studied by both wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) and the stereocomplex phase of the PLA stereo-diblock copolymers was successfully identified.

19.
Antioxidants (Basel) ; 10(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34829650

RESUMEN

Oxidative stress has become a major concern in the field of spermatology, and one of the possible solutions to this acute problem would be the use of antioxidant protection; however, more studies are required in this field, as highly contradictory results regarding the addition of antioxidants have been obtained. Vitamin E is a powerful biological antioxidant, but its low stability and high hydrophobicity limit its application in spermatology, making the use of organic solvents necessary, which renders spermatozoa practically motionless. Keeping this in mind, we propose the use of hydrogels (HVEs) and nanoemulsions (NVEs), alone or in combination, as carriers for the controlled release of vitamin E, thus, improving its solubility and stability and preventing oxidative stress in sperm cells. Cryopreserved sperm from six stags was thawed and extended to 30 × 106 sperm/mL in Bovine Gamete Medium (BGM). Once aliquoted, the samples were incubated as follows: control, free vitamin E (1 mM), NVEs (9 mM), HVEs (1 mM), and the combination of HVEs and NVEs (H + N), with or without induced oxidative stress (100 µM Fe2+/ascorbate). The different treatments were analyzed after 0, 2, 5, and 24 h of incubation at 37 °C. Motility (CASA®), viability (YO-PRO-1/IP), mitochondrial membrane potential (Mitotracker Deep Red 633), lipid peroxidation (C11 BODIPY 581/591), intracellular reactive oxygen species production (CM-H2DCFDA), and DNA status (SCSA®) were assessed. Our results show that the deleterious effects of exogenous oxidative stress were prevented by the vitamin E-loaded carriers proposed, while the kinematic sperm parameters (p ˂ 0.05) and sperm viability were always preserved. Moreover, the vitamin E formulations maintained and preserved mitochondrial activity, prevented sperm lipid peroxidation, and decreased reactive oxygen species (ROS) production (p ˂ 0.05) under oxidative stress conditions. Vitamin E formulations were significantly different as regards the free vitamin E samples (p < 0.001), whose sperm kinematic parameters drastically decreased. This is the first time that vitamin E has been formulated as hydrogels. This new formulation could be highly relevant for sperm physiology preservation, signifying an excellent approach against sperm oxidative damage.

20.
Pharmaceutics ; 13(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34683852

RESUMEN

Despite some limitations such as long-term side effects or the potential presence of intrinsic or acquired resistance, platinum compounds are key therapeutic components for the treatment of several solid tumors. To overcome these limitations, maintaining the same efficacy, organometallic ruthenium(II) compounds have been proposed as a viable alternative to platinum agents as they have a more favorable toxicity profile and represent an ideal template for both, high-throughput and rational drug design. To support the preclinical development of bis-phoshino-amine ruthenium compounds in the treatment of breast cancer, we carried out chemical modifications in the structure of these derivatives with the aim of designing less toxic and more efficient therapeutic agents. We report new bis-phoshino-amine ligands and the synthesis of their ruthenium counterparts. The novel ligands and compounds were fully characterized, water stability analyzed, and their in vitro cytotoxicity against a panel of tumor cell lines representative of different breast cancer subtypes was evaluated. The mechanism of action of the lead compound of the series was explored. In vivo toxicity was also assessed. The results obtained in this article might pave the way for the clinical development of these compounds in breast cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...