Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 3(6): 1539-47, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19459692

RESUMEN

The origin of the magnetic anisotropy is explained in an assembly of aligned magnetic nanoparticles. For that, nanoparticles synthesized biologically by Magnetospirillum magneticum AMB-1 magnetotactic bacteria are used. For the first time, it is possible to differentiate between the two contributions arising from the alignment of the magnetosome easy axes and the strength of the magnetosome dipolar interactions. The magnetic anisotropy is shown to arise mainly from the dipolar interactions between the magnetosomes.

2.
Biochim Biophys Acta ; 1784(7-8): 1098-105, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18474266

RESUMEN

The human gene for catechol O-methyltransferase has a common single-nucleotide polymorphism that results in substitution of methionine (M) for valine (V) 108 in the soluble form of the enzyme (s-COMT). 108M s-COMT loses enzymatic activity more rapidly than 108V s-COMT at physiological temperature, and the 108M allele has been associated with increased risk of breast cancer and several neuropsychiatric disorders. We used circular dichroism (CD), dynamic light scattering, and fluorescence spectroscopy to examine how the 108V/M polymorphism affects the stability of the purified, recombinant protein to heat and guanidine hydrochloride (GuHCl). COMT contains two tryptophan residues, W143 and W38Y, which are located in loops that border the S-adenosylmethionine (SAM) and catechol binding sites. We therefore also studied the single-tryptophan mutants W38Y and W143Y in order to dissect the contributions of the individual tryptophans to the fluorescence signals. The 108V and 108M proteins differed in the stability of both the tertiary structure surrounding the active site, as probed by the fluorescence yields and emission spectra, and their global secondary structure as reflected by CD. With either probe, the midpoint of the thermal transition of 108M s-COMT was 5 to 7 degrees C lower than that of 108V s-COMT, and the free energy of unfolding at 25 degrees C was smaller by about 0.4 kcal/mol. 108M s-COMT also was more prone to aggregation or partial unfolding to a form with an increased radius of hydration at 37 degrees C. The co-substrate SAM stabilized the secondary structure of both 108V and 108M s-COMT. W143 dominates the tryptophan fluorescence of the folded protein and accounts for most of the decrease in fluorescence that accompanies unfolding by GuHCl. While replacing either tryptophan by tyrosine was mildly destabilizing, the lower stability of the 108M variant was retained in all cases.


Asunto(s)
Catecol O-Metiltransferasa/química , Mutación , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/aislamiento & purificación , Dicroismo Circular , Humanos , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Dispersión de Radiación , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...