Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Intervalo de año de publicación
1.
Genes (Basel) ; 12(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34828351

RESUMEN

Tomato is one of the most important crops for human consumption. Its production is affected by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), one of the most devastating bacterial pathogens of this crop. Several wild tomato species represent a source of natural resistance to Cmm. Here, we contrasted the transcriptomes of the resistant wild tomato species Solanum arcanum LA2157 and the susceptible species Solanum lycopersicum cv. Ailsa Craig, during the first 24 h of challenge with Cmm. We used three analyses approaches which demonstrated to be complementary: mapping to S. lycopersicum reference genome SL3.0; semi de novo transcriptome assembly; and de novo transcriptome assembly. In a global context, transcriptional changes seem to be similar between both species, although there are some specific genes only upregulated in S. arcanum during Cmm interaction, suggesting that the resistance regulatory mechanism probably diverged during the domestication process. Although S. lycopersicum showed enriched functional groups related to defense, S. arcanum displayed a higher number of induced genes related to bacterial, oomycete, and fungal defense at the first few hours of interaction. This study revealed genes that may contribute to the resistance phenotype in the wild tomato species, such as those that encode for a polyphenol oxidase E, diacyl glycerol kinase, TOM1-like protein 6, and an ankyrin repeat-containing protein, among others. This work will contribute to a better understanding of the defense mechanism against Cmm, and the development of new control methods.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Transcriptoma , Infecciones Bacterianas/microbiología , Clavibacter , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genoma de Planta , Interacciones Huésped-Patógeno , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq
2.
FEMS Microbiol Ecol ; 97(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34601598

RESUMEN

Agave lechuguilla has one of the widest distributions among other agave species in the Chihuahuan Desert. Their capacity to grow in poorly developed soils and harsh conditions has been related to their association with plant growth-promoting rhizobacteria. In this work, we explored how soil properties and plant growth stage influence the composition of the rhizobacterial communities, their interactions, and the enzymatic activity and abundance of nitrogen-fixing bacteria and organic phosphorus-mineralizing bacteria in two subregions of the Chihuahuan Desert. We found that mature plants of lechuguilla stimulated the activity and abundance of nutrient-improvement rhizobacteria, and these soil samples had a higher content of total organic carbon, ammonium (NH4) and nitrite + nitrate (NO2+NO3). Nutrient availability seems to be an essential driver of the bacterial community's structure since the genera with more connections (hubs) were those with known mechanisms related to the availability of nutrients, such as env. OPS17 (Bacteroidetes), Gemmatimonadaceae uncultured, S0134terrestrial group, BD211terrestrial group (Gemmatimonadetes), Chthoniobacteracea and Candidatus Udaeobacter (Verrucomicrobia). This work shows that the late growth stages of lechuguilla recruit beneficial bacteria that favor its establishment and tolerance to harsh conditions of the arid lands.


Asunto(s)
Agave , Rizosfera , Bacterias/genética , Nutrientes , Suelo , Microbiología del Suelo
3.
Plant Cell Tissue Organ Cult ; 147(1): 85-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276113

RESUMEN

Bordetella pertusis causes whooping cough or pertussis, disease that has not been eradicated and is reemerging despite the availability and massive application for decades of vaccines, such as Boostrix® which is an acellular vaccine harboring two regions of S1 subunit of the pertussis toxin, one region of filamentous hemagglutinin and one region of pertactin. In 2008, the World Health Organization estimated 16 million new cases and 95% occurred in developing countries with 195,000 children's deaths. We attempt to improve the vaccine against whooping cough and reduce its production costs by obtaining plants and bacteria expressing a heterologous protein harboring pertactin, pertussis toxin, and filamentous hemagglutinin epitopes from B. pertussis and assessing its immunogenicity after oral administration to mice. First, we designed a synthetic gene that encodes a multiepitope, then it was cloned into a vector for transient transformation by infiltration of tobacco plants with low amounts of nicotine; the codon bias-optimized construct was also cloned into an Escherichia coli expression vector. Recombinant proteins from E. coli cells (PTF) and tobacco leaves (PTF-M3') were purified by nickel affinity with a yield of 0.740 mg of recombinant protein per g dry weight. Purified recombinant proteins were administered orally to groups of Balb/c mice using the Boostrix® vaccine and vehicle (PBS) as positive and negative controls, respectively. A higher mucosal and systemic antibody responses were obtained in mice receiving the PTF and PTF-M3' proteins than Boostrix® or PBS. These findings prove the concept that oral administration of multiepitope recombinant proteins expressed in plants may be a potential edible vaccine. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11240-021-02107-1.

4.
Mol Immunol ; 135: 398-407, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022515

RESUMEN

It's been almost a century since immunologists started using adjuvants as tools to develop more effective vaccines. Despite the rising number of adjuvanted vaccines in the last decades, we still lack knowledge of the adjuvants' effects on antibody response. This study was aimed to test the effect of immunizing mice with the human Inactivated Influenza vaccine (IIV), either alone or combined with different widely used adjuvants on the specific antibody response induced. Differential levels of IgM and IgG subclasses were found with the different adjuvants tested. Higher levels of antibodies did not always correspond with a higher efficacy to interfere with the virus infectivity. Differences in neutralization properties are possibly mediated by the specificity of the repertoire of antibodies induced. The repertoire was studied using a phage display 7-mer peptide library to screen for epitopes/mimotopes recognized by serum pools from vaccinated mice. The selected phage clones included peptides that corresponded to conformational mimotopes since they have no homology with lineal sequences of the Influenza strains' proteins. Five peptides were identified as recognized by sera from mice immunized with the IIV vaccine alone, including peptides from the hemagglutinin stalk domain, and by sera from mice immunized with the vaccine plus the different adjuvants employed. Adjuvants elicited a more diverse repertoire of epitope-recognizing antibodies that recognized epitopes of the HA recombinant globular head. Mimotopes were theoretically located at the neutralizing antigenic sites of the globular head of Influenza A H1N1pdm09, Influenza A H3N2, and Influenza B hemagglutinin. This study illustrates how different adjuvants can modify the extent and quality of humoral immunity against the IIV vaccine and the effectiveness of vaccination.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la Influenza/inmunología , Potencia de la Vacuna , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biología Computacional , Epítopos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Biblioteca de Péptidos , Vacunación
5.
Plants (Basel) ; 10(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803105

RESUMEN

The need to produce food in a sustainable way to counteract the effects of excessive use of agrochemicals opens the door to the generation of new technologies that are not based on fossil fuels and are less toxic to ecosystems. Plant growth-promoting bacteria (PGPB) could represent an alternative to chemical biofertilizers and pesticides offering protection for biotic and abiotic stresses. In this work, a bacterial isolate from roots of castor bean (Ricinus communis) was identified and named as Bacillus cereus strain "Amazcala" (B.c-A). This isolate displayed the ability to solubilize inorganic phosphate and produce gibberellic acid (GA3). Moreover, this bacterium provided significant increases in height, stem width, dry weight, and total chlorophyll content in tomato plants. Interestingly, B.c-A also significantly decreased the severity of bacterial canker disease on tomato caused by Clavibacter michiganensis (Cmm) in preventive disease assays under greenhouse conditions. Based on our results, B.c-A can be considered as PGPB and a useful tool in Cmm disease control on tomato plant under greenhouse conditions.

6.
Rev. Fac. Med. UNAM ; 63(3): 7-18, may.-jun. 2020. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1155400

RESUMEN

Resumen En el 2001, se identificó en Holanda al metapneumovirus humano (hMPV) como un "nuevo" agente etiológico causante de infecciones respiratorias agudas en infantes menores de 5 años; sin embargo, también se ha aislado en personas de la tercera edad e inmunocomprometidos. Este virus se considera como el segundo agente etiológico en enfermedades agudas del tracto respiratorio. En la actualidad, el costo estimado de las infecciones respiratorias agudas (IRA) en nuestro país es de 9,000 dólares estadounidenses por paciente hospitalizado. El hMPV es un miembro del género Metapneumovirus, familia Pneumoviridae, que pertenece al orden de los Mononegavirales, correspondiente a virus de ácido ribonucleico (RNA) monocatenario negativo, que consta de 8 genes en el orden 3'-N-P-M-F-M2-SH-G-L-5', y que codifica para 9 proteínas. De estas proteínas, la glicoproteína de fusión F está altamente conservada en el género Metapneumovirus y es el mayor determinante antigénico, y al no existir aún vacuna aprobada para este virus, se ha utilizado como un epítopo candidato para el diseño de una vacuna que confiera inmunidad al hospedero o como un blanco terapéutico en la creación de péptidos antivirales que inhiban la fusión del virus a su célula blanco y se evite la infección en sujetos de alto riesgo de contagio, ya que en la actualidad no se ha aprobado por la COFEPRIS ningún tratamiento profiláctico contra hMPV.


Abstract In 2001 in the Netherlands, Human metapneumovirus (hMPV) was identified as a "new" etiologic agent causing acute respiratory infections in children younger than 5 years old; however, it has also been isolated in the elderly and immunocompromised people. This virus is considered the second etiological agent in acute diseases of the respiratory tract. Currently, the estimated cost of IRAs in our country is of 9,000 USD per inpatient. hMPV is a member of the genus Metapneumovirus, family Pneumoviridae, and it belongs to the order Mononegavirales that is part of the negative single-stranded ribonucleic acid (RNA) virus, consisting of eight genes ordered: 3'-N-P-M-F-M2-SH-G-L-5 ', and which encodes for 9 proteins. Of these proteins, the F fusion glycoprotein is highly conserved in the genus Metapneumovirus, and is the major antigenic determinant, and because an approved vaccine doesn't exist, it has been used as a candidate epitope for the design of a vaccine that confers host immunity or as a therapeutic target in the creation of antiviral peptides that inhibit the fusion of the virus to its target cell and to avoid infection in subjects at high risk of contagion since there is currently none accepted by COFEPRIS as a prophylactic treatment against hMPV.

7.
J Nat Prod ; 82(3): 631-635, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30500200

RESUMEN

Nine terpenoids were isolated from the leaves and flowers of Salvia amarissima, including a new acylated diterpenoid glucoside, amarisolide F (1), a new neo-clerodane diterpenoid, amarissinin D (2), which was isolated as an acetyl derivative (2a), and four known diterpenoids. The structure of amarisolide F (1) was elucidated by NMR and MS data analyses, as well as its methanolysis products 7 and 8, which also constituted new diterpenoids, named amarissinin E and 8- epi-amarissinin E, respectively. The absolute configuration of compound 7 was established by single-crystal X-ray diffraction. The cytotoxicity and anti-MDR effect of 1 in three phenotypes of the MCF-7 cell lines were assayed. Compound 1 was 2-3.6-fold more active than amarissinins A (3) and B (4), but several orders of magnitude less active than teotihuacanin (6) and reserpine.


Asunto(s)
Diterpenos/aislamiento & purificación , Glucósidos/química , Salvia/química , Acilación , Diterpenos/química , Diterpenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Análisis Espectral/métodos
8.
Oncol Lett ; 15(1): 1246-1254, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29399179

RESUMEN

Antitumor conventional treatments including chemo/radiotherapy result in several side effects and non-specificity. Therapies including the use of oncolytic viruses, particularly the Newcastle disease virus (NDV), have emerged as an attractive alternative due to their capacity to kill cancer cells directly or through stimulation of the immune system. In the present study, a commercial vaccine composed of a recombinant attenuated NDV strain P05 (rNDV-P05) was assessed for antitumor and immunostimulatory activity. Firstly, hemagglutination activity was evaluated at different pH and temperature conditions. Then, cancer cell lines and peripheral blood mononuclear cells (PBMC) were co-cultured with or without rNDV-P05 and cytoplasmic nucleosomes were measured by enzyme-linked immunosorbent assay (ELISA) as an apoptosis indicator. Antitumor cytokines produced by PBMC in response to the virus were analyzed by ELISA and reverse transcription quantitative polymerase chain reaction. Characterization of rNDV-P05 indicates that the virus is slightly sensible to acid and basic pH, and stable at temperatures no greater than 42°C. The majority of cell lines developed apoptosis in co-culture with rNDV-P05 in a dose-time dependent manner. The highest level of HeLa, HCC1954 and HepG2 cell apoptosis was at 48 h/50 hemagglutination units (HU), and HL-60 was 24 h/50 HU. A549 cell line and PBMC did not show sensitivity to apoptosis by the virus. PBMC from healthy donors stimulated with the rNDV-P05 increased significantly the levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α and soluble TNF-related apoptosis-inducing ligand in culture supernatants, as well as their mRNA expression. These results demonstrate that the pro-apoptotic effect of rNDV-P05 and its magnitude is specific to particular tumor cell lines and is not induced on PBMC; and the virus stimulates the expression of several key antitumor cytokines. This study promotes the use of rNDV-P05 in an alternate application of different viral strains during virotherapy with NDV.

9.
Planta ; 243(2): 451-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26474991

RESUMEN

MAIN CONCLUSION : A RhoA-derived peptide fused to carrier molecules from plants showed enhanced biological activity of in vitro assays against respiratory syncytial virus compared to the RhoA peptide alone or the synthetic RhoA peptide. A RhoA-derived peptide has been reported for over a decade as a potential inhibitor of respiratory syncytial virus (RSV) infection both in vitro and in vivo and is anticipated to be a promising alternative to monoclonal antibody-based therapy against RSV infection. However, there are several challenges to furthering development of this antiviral peptide, including improvement in the peptide's bioavailability, development of an efficient delivery system and identification of a cost-effective production platform. In this study, we have engineered a RhoA peptide as a genetic fusion to two carrier molecules, either lichenase (LicKM) or the coat protein (CP) of Alfalfa mosaic virus. These constructs were introduced into Nicotiana benthamiana plants using a tobacco mosaic virus-based expression vector and targets purified. The results demonstrated that the RhoA peptide fusion proteins were efficiently expressed in N. benthamiana plants, and that two of the resulting fusion proteins, RhoA-LicKM and RhoA2-FL-d25CP, inhibited RSV growth in vitro by 50 and 80 %, respectively. These data indicate the feasibility of transient expression of this biologically active antiviral RhoA peptide in plants and the advantage of using a carrier molecule to enhance target expression and efficacy.


Asunto(s)
Proteínas de Plantas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Virus Sincitiales Respiratorios/efectos de los fármacos , Proteína de Unión al GTP rhoA/farmacología , Vectores Genéticos , Pruebas de Sensibilidad Microbiana , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Virus del Mosaico del Tabaco/genética , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética
10.
Planta ; 242(1): 69-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25828350

RESUMEN

MAIN CONCLUSION: The HRA2pl peptide expressed by transient transformation in N. tabacum plants is capable of inhibiting the binding of the human metapneumovirus to HEp-2 cells at the fusion stage. Human metapneumovirus (hMPV) is an agent responsible for acute respiratory infections that mainly affects children under 3 years, the elderly and immunocompromised patients. In children younger than 5 years, respiratory tract infections account for 20 % of deaths worldwide. However, there is currently no treatment or vaccine available against hMPV. The production of a safe, efficient and low cost treatment against this virus is a current challenge. Plants provide a system for recombinant protein production that is cost effective and is easier to scale up to an industrial level than other platforms; in addition, the plant tissue may be used as raw food, dried or, alternatively, proteins may be partially or fully purified and administered in aerosol or capsules as dry powder. In this study, we designed a gene expressing an antiviral peptide against hMPV based on the heptad repeat A domain of the F protein of the virus. We produced the recombinant peptide by a viral transient expression system (Magnifection(®)) in Nicotiana tabacum plants. The efficacy of this antiviral peptide was confirmed by in vitro assays in HEp-2 cell line. This is a promising result that can offer a prophylactic approach against hMPV.


Asunto(s)
Antivirales/química , Metapneumovirus/fisiología , Nicotiana/genética , Péptidos/farmacología , Transformación Genética , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Antivirales/farmacología , Bioensayo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Metapneumovirus/efectos de los fármacos , Datos de Secuencia Molecular , Infecciones por Paramyxoviridae/patología , Infecciones por Paramyxoviridae/virología , Péptidos/química , Plantas Modificadas Genéticamente , Transformación Genética/efectos de los fármacos
11.
Front Plant Sci ; 6: 1019, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734014

RESUMEN

Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI) transcript in S. peruvianum compared to S. lycopersicum following infection with Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of SCEI from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS) vector based on the geminivirus, Tomato Mottle Virus (ToMoV). Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, resulting in leaf bleaching. VIGS with the ToMoV_SCEI construct resulted in ~61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. The SCEI-silenced plants showed unilateral wilting (15 dpi) and subsequent death (20 dpi) of the entire plant after Cmm inoculation, whereas the empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. The SCEI-silenced plants showed higher Cmm colonization and an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of transcription factors, leading to expression of proteins involved in salicylic acid-dependent defense responses.

12.
Extremophiles ; 16(6): 805-17, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23065059

RESUMEN

Extremophilic anaerobes are widespread in saline, acid, alkaline, and high or low temperature environments. Carbon is essential to living organisms and its fixation, degradation, or mineralization is driven by, up to now, six metabolic pathways. Organisms using these metabolisms are known as autotrophs, acetotrophs or carbon mineralizers, respectively. In anoxic and extreme environments, besides the well-studied Calvin-Benson-Bassham cycle, there are other five carbon fixation pathways responsible of autotrophy. Moreover, regarding carbon mineralization, two pathways perform this key process for carbon cycling. We might imagine that all the pathways can be found evenly distributed in microbial biotopes; however, in extreme environments, this does not occur. This manuscript reviews the most commonly reported anaerobic organisms that fix carbon and mineralize acetate in extreme anoxic habitats. Additionally, an inventory of autotrophic extremophiles by biotope is presented.


Asunto(s)
Acetatos/metabolismo , Bacterias Anaerobias/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Anaerobiosis , Bacterias Anaerobias/genética , Ecosistema , Redes y Vías Metabólicas , Filogenia
13.
Plant Mol Biol ; 78(4-5): 337-49, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228408

RESUMEN

Although the human immunodeficiency virus (HIV) causes one of the most important infectious diseases worldwide, attempts to develop an effective vaccine remain elusive. Designing recombinant proteins capable of eliciting significant and protective mammalian immune responses remain a priority. Moreover, large-scale production of proteins of interest at affordable cost remains a challenge for modern biotechnology. In this study, a synthetic gene encoding a C4V3 recombinant protein, known to induce systemic and mucosal immune responses in mammalian systems, has been introduced into tobacco chloroplasts to yield high levels of expression. Integration of the transgene into the tobacco plastome has been verified by Southern blot hybridization. The recombinant C4V3 protein is also detected in tobacco chloroplasts by confocal microscopy. Reactivity of the heterologous protein with both an anti-C4V3 rabbit serum as well as sera from HIV positive patients have been assayed using Western blots. When administered by the oral route in a four-weekly dose immunization scheme, the plant-derived C4V3 has elicited both systemic and mucosal antibody responses in BALB/c mice, as well as CD4+ T cell proliferation responses. These findings support the viability of using plant chloroplasts as biofactories for HIV candidate vaccines, and could serve as important vehicles for the development of a plant-based candidate vaccine against HIV.


Asunto(s)
Fármacos Anti-VIH/inmunología , Cloroplastos/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Fragmentos de Péptidos/inmunología , Péptidos/administración & dosificación , Péptidos/inmunología , Vacunas Sintéticas/administración & dosificación , Administración Oral , Animales , Fármacos Anti-VIH/administración & dosificación , Cloroplastos/inmunología , Femenino , Proteína gp120 de Envoltorio del VIH/genética , Seropositividad para VIH , Humanos , Inmunidad Mucosa/inmunología , Inmunización , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/genética , Péptidos/genética , Plantas Modificadas Genéticamente , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Nicotiana/genética
14.
J Hazard Mater ; 195: 201-7, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21880424

RESUMEN

The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 µM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (µEq)L(-1), linked to the reduction of 619 ± 81 µEq L(-1) of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes ß-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.


Asunto(s)
Benceno/metabolismo , Biodegradación Ambiental , Sustancias Húmicas , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Cromatografía de Gases , Clonación Molecular , Cartilla de ADN , Electrones , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
15.
Plant Cell Rep ; 30(6): 1145-52, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21318355

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is one of the main causative agents of diarrhea in infants and for travelers. Inclusion of a heat-stable (ST) toxin into vaccine formulations is mandatory as most ETEC strains can produce both heat-labile (LT) and ST enterotoxins. In this study, a genetic fusion gene encoding for an LTB:ST protein has been constructed and transferred into tobacco via Agrobacterium tumefaciens-mediated transformation. Transgenic tobacco plants carrying the LTB:ST gene are then subjected to GM1-ELISA revealing that the LTB:ST has assembled into pentamers and displays antigenic determinants from both LTB and ST. Protein accumulation of up to 0.05% total soluble protein is detected. Subsequently, mucosal and systemic humoral responses are elicited in mice orally dosed with transgenic tobacco leaves. This has suggested that the plant-derived LTB:ST is immunogenic via the oral route. These findings are critical for the development of a plant-based vaccine capable of eliciting broader protection against ETEC and targeting both LTB and ST. Features of this platform in comparison to transplastomic approaches are discussed.


Asunto(s)
Toxinas Bacterianas/metabolismo , Núcleo Celular/metabolismo , Enterotoxinas/metabolismo , Escherichia coli/metabolismo , Nicotiana/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/inmunología , Administración Oral , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos/inmunología , Antígenos/inmunología , Secuencia de Bases , Proteínas de Escherichia coli , Ratones , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
16.
Plant Cell Rep ; 30(3): 417-24, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21188384

RESUMEN

DPT vaccine, designed to immunize against diphtheria, pertussis, and tetanus, has been shown to be effective in humans. Nevertheless, dissatisfaction with the whole-cell preparations is due to the reactogenicity, which has to lead to the development of new safer formulations. Previously, we described the expression in tomato of a plant-optimized synthetic gene encoding the recombinant polypeptide sDPT, containing mainly immunoprotective epitopes of the diphtheria, pertussis and tetanus exotoxins and two adjuvants. In this study, we examined whether the ingestion of tomato-derived sDPT protein induces specific antibodies in mice after three weekly doses scheme. A positive group immunized with DPT toxoids was included. Specific antibody levels were assessed in serum, gut and lung. Sera tested for IgG antibody response to pertussis, tetanus and diphtheria toxin showed responses to the foreign antigens; interestingly, the response to diphtheria epitope was similar to those observed in the positive group. We found higher IgG1 than IgG2a responses in serum. A modest IgG response was observed in the tracheopulmonary fluid. High response of IgA against tetanus toxin was evident in gut, which was statistically comparable to that obtained in the positive group. The levels of response in these groups were higher than those in mice that received wild-type tomato. These findings support the concept of using transgenic tomatoes expressing sDPT polypeptide as model for edible vaccine against diphtheria, pertussis, and tetanus.


Asunto(s)
Toxinas Bacterianas/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/biosíntesis , Exotoxinas/inmunología , Solanum lycopersicum/genética , Vacunas Comestibles/biosíntesis , Animales , Anticuerpos Antibacterianos/sangre , Bordetella pertussis/inmunología , Clostridium tetani/inmunología , Corynebacterium diphtheriae/inmunología , Difteria/prevención & control , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Epítopos/inmunología , Frutas/genética , Frutas/inmunología , Inmunoglobulina G/sangre , Intestinos/inmunología , Pulmón/inmunología , Solanum lycopersicum/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Tétanos/prevención & control , Vacunas Comestibles/inmunología , Tos Ferina/prevención & control
17.
J Plant Physiol ; 168(2): 174-80, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20655621

RESUMEN

Expression of the protective F1 and V antigens of Yersinia pestis, as a fusion protein, in carrot was pursued in an effort to develop an alternative vaccine production system against the serious plague disease. Transgenic carrot plants carrying the F1-V encoding gene were developed via Agrobacterium-mediated transformation. Presence, integration, and expression of the F1-V encoding gene were confirmed by polymerase chain reaction (PCR), DNA gel blot analysis, and reverse-transcriptase (RT)-PCR analyses, respectively. An ELISA assay confirmed the antigenicity of the plant-derived F1-V fusion protein. Immunogenicity was evaluated subcutaneously in mice using a soluble protein extract of freeze-dried transgenic carrot. Significant antibody levels were detected following immunization. These results demonstrated that the F1-V protein could be expressed in carrot tap roots, and that the carrot F1-V recombinant protein retained its antigenicity and immunogenicity.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Daucus carota/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Yersinia pestis/metabolismo , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Daucus carota/genética , Ensayo de Inmunoadsorción Enzimática , Ratones , Ratones Endogámicos BALB C , Peste/inmunología , Vacuna contra la Peste/genética , Vacuna contra la Peste/inmunología , Vacuna contra la Peste/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Recombinantes de Fusión/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Yersinia pestis/genética
18.
Virol J ; 7: 275, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20958988

RESUMEN

BACKGROUND: Euphorbia mosaic virus (EuMV) is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep) and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. RESULTS: A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR) led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. CONCLUSIONS: EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in the non-coding region of their DNA-B component, short rep gene sequences located downstream to a CP-promoter-like domain. This assemblage of DNA-A-related sequences within the DNA-B IR is reminiscent of polyomavirus microRNAs and could be involved in the posttranscriptional regulation of the cognate viral rep gene, an intriguing possibility that should be experimentally explored.


Asunto(s)
Begomovirus/fisiología , ADN Intergénico , ADN Viral/genética , Enfermedades de las Plantas/virología , Replicación Viral , Begomovirus/genética , Begomovirus/aislamiento & purificación , Capsicum/virología , Secuencia Conservada , ADN Viral/química , México , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia , Nicotiana/virología
19.
Planta ; 232(2): 409-16, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20461403

RESUMEN

Yersinia pestis is a pathogenic agent that causes the bubonic and pneumonic plague. The development of an efficient and low-cost oral vaccine against these diseases is highly desirable. In this study, the immunogenic fusion protein F1-V from Y. pestis was introduced into lettuce via Agrobacterium-mediated transformation, and putative transgenic lines were developed. The presence of the transgene in these putative transgenic lines was determined using polymerase chain reaction (PCR), and transgene integration and transgene copy number were confirmed following Southern blot analysis. The presence of specific F1-V transcripts was confirmed by reverse-transcriptase (RT)-PCR. Using monoclonal antibodies, ELISA and western blot analysis revealed that the expected antigenic F1-V protein was successfully expressed in transgenic lines. Mice immunized subcutaneously with lettuce expressing the F1-V antigen developed systemic humoral responses as 'proof of concept' of using lettuce as a production platform for the F1-V immunogen that could be used as a candidate plant-based vaccine against plague.


Asunto(s)
Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Lactuca/metabolismo , Vacuna contra la Peste/inmunología , Vacuna contra la Peste/metabolismo , Peste/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Yersinia pestis/inmunología , Animales , Antígenos Bacterianos/genética , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Lactuca/genética , Ratones , Ratones Endogámicos BALB C , Peste/microbiología , Vacuna contra la Peste/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Rhizobium/genética , Yersinia pestis/patogenicidad
20.
Pediatr Infect Dis J ; 28(11): 1024-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19738509

RESUMEN

Human metapneumovirus (hMPV) is an important cause of acute respiratory infections (ARI). We studied 335 ARI episodes in 74 children<5 years of age attending a day care center during a 1-year period to detect the presence of hMPV and other viruses. Seven (9.5%) children were infected by hMPV and this virus accounted for 2.1% of the ARI episodes.


Asunto(s)
Metapneumovirus/aislamiento & purificación , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Paramyxoviridae/virología , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/virología , Guarderías Infantiles , Preescolar , Femenino , Humanos , Lactante , Masculino , México/epidemiología , Prevalencia , Virus Sincitiales Respiratorios/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...