Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 724: 150234, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38865812

RESUMEN

Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.


Asunto(s)
Colágeno , Células Endoteliales de la Vena Umbilical Humana , Ácido Hialurónico , Hidrogeles , Laminina , Microvasos , Uniones Estrechas , Humanos , Hidrogeles/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Laminina/química , Laminina/metabolismo , Colágeno/química , Colágeno/metabolismo , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Uniones Estrechas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dispositivos Laboratorio en un Chip , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Cultivadas
2.
Lab Chip ; 23(20): 4445-4455, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37740366

RESUMEN

Conventional culture conditions are oftentimes insufficient to study tissues, organisms, or 3D multicellular assemblies. They lack both dynamic chemical and mechanical control over the microenvironment. While specific microfluidic devices have been developed to address chemical control, they often do not allow the control of compressive forces emerging when cells proliferate in a confined environment. Here, we present a generic microfluidic device to control both chemical and mechanical compressive forces. This device relies on the use of sliding elements consisting of microfabricated rods that can be inserted inside a microfluidic device. Sliding elements enable the creation of reconfigurable closed culture chambers for the study of whole organisms or model micro-tissues. By confining the micro-tissues, we studied the biophysical impact of growth-induced pressure and showed that this mechanical stress is associated with an increase in macromolecular crowding, shedding light on this understudied type of mechanical stress. Our mechano-chemostat allows the long-term culture of biological samples and can be used to study both the impact of specific conditions as well as the consequences of mechanical compression.


Asunto(s)
Microfluídica , Estrés Mecánico , Presión
3.
Nat Phys ; 18(4): 411-416, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37152719

RESUMEN

Cells that grow in confined spaces eventually build up mechanical compressive stress. This growth-induced pressure (GIP) decreases cell growth. GIP is important in a multitude of contexts from cancer, to microbial infections, to biofouling, yet our understanding of its origin and molecular consequences remains limited. Here, we combine microfluidic confinement of the yeast Saccharomyces cerevisiae, with rheological measurements using genetically encoded multimeric nanoparticles (GEMs) to reveal that growth-induced pressure is accompanied with an increase in a key cellular physical property: macromolecular crowding. We develop a fully calibrated model that predicts how increased macromolecular crowding hinders protein expression and thus diminishes cell growth. This model is sufficient to explain the coupling of growth rate to pressure without the need for specific molecular sensors or signaling cascades. As molecular crowding is similar across all domains of life, this could be a deeply conserved mechanism of biomechanical feedback that allows environmental sensing originating from the fundamental physical properties of cells.

4.
Adv Biol (Weinh) ; 5(7): e2100484, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33969641

RESUMEN

Microdevices composed of microwell arrays integrating nanoelectrodes (OptoElecWell) are developed to achieve dual high-resolution optical and electrochemical detections on single Saccharomyces cerevisiae yeast cells. Each array consists of 1.6 × 105 microwells measuring 8 µm in diameter and 5 µm height, with a platinum nanoring electrode for in situ electrochemistry, all integrated on a transparent thin wafer for further high-resolution live-cell imaging. After optimizing the filling rate, 32% of cells are effectively trapped within microwells. This allows to analyse S. cerevisiae metabolism associated with basal respiration while simultaneously measuring optically other cellular parameters. In this study, the impact of glucose concentration on respiration and intracellular rheology is focused. It is found that while the oxygen uptake rate decreases with increasing glucose concentration, diffusion of tracer nanoparticles increases. The OptoElecWell-based respiration methodology provides similar results compared to the commercial gold-standard Seahorse XF analyzer, while using 20 times fewer biological samples, paving the way to achieve single cell metabolomics. In addition, it facilitates an optical route to monitor the contents within single cells. The proposed device, in combination with the dual detection analysis, opens up new avenues for measuring cellular metabolism, and relating it to cellular physiological indicators at single cell level.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Electrodos , Oxígeno , Reología
5.
PLoS One ; 12(2): e0172480, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28212416

RESUMEN

BACKGROUND: Behavioral studies in both human and animals generally converge to the dogma that multisensory integration improves reaction times (RTs) in comparison to unimodal stimulation. These multisensory effects depend on diverse conditions among which the most studied were the spatial and temporal congruences. Further, most of the studies are using relatively simple stimuli while in everyday life, we are confronted to a large variety of complex stimulations constantly changing our attentional focus over time, a modality switch that can impact on stimuli detection. In the present study, we examined the potential sources of the variability in reaction times and multisensory gains with respect to the intrinsic features of a large set of natural stimuli. METHODOLOGY/PRINCIPLE FINDINGS: Rhesus macaque monkeys and human subjects performed a simple audio-visual stimulus detection task in which a large collection of unimodal and bimodal natural stimuli with semantic specificities was presented at different saliencies. Although we were able to reproduce the well-established redundant signal effect, we failed to reveal a systematic violation of the race model which is considered to demonstrate multisensory integration. In both monkeys and human species, our study revealed a large range of multisensory gains, with negative and positive values. While modality switch has clear effects on reaction times, one of the main causes of the variability of multisensory gains appeared to be linked to the intrinsic physical parameters of the stimuli. CONCLUSION/SIGNIFICANCE: Based on the variability of multisensory benefits, our results suggest that the neuronal mechanisms responsible of the redundant effect (interactions vs. integration) are highly dependent on the stimulus complexity suggesting different implications of uni- and multisensory brain regions. Further, in a simple detection task, the semantic values of individual stimuli tend to have no significant impact on task performances, an effect which is probably present in more cognitive tasks.


Asunto(s)
Estimulación Acústica/métodos , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología , Adulto , Animales , Conducta Animal , Femenino , Humanos , Macaca mulatta , Masculino , Experimentación Humana no Terapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...