Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Saudi Pharm J ; 32(4): 102011, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454918

RESUMEN

Mephedrone is an illegal drug that is used recreationally. Few studies have been conducted to investigate the mechanisms by which mephedrone is harming cells. In this research, we investigated the effect of mephedrone using toxicology coupled with LC-MS/MS based metabolomics in the two CNS derived cell lines. Methods of assessment such as neutral red (NR) assay, dimethylthiazolyl diphenyltetrazolium bromide (MTT), lactose dehydrogenase (LDH) measurement, and morphology were performed to identify the effect on cell viability and to identify the best concentration to be used in a metabolomics study. A concentration of 100 µM of mephedrone was used in the metabolomic experiment because at this concentration mephedrone had induced several intracellular changes. Although there no clear indicators of cellular damage caused by mephedrone. In astrocytes there was a clear indication that cell membrane function might be impaired by depletion of ether lipids.

3.
Reprod Sci ; 31(7): 1958-1972, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38267808

RESUMEN

The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.


Asunto(s)
Antioxidantes , Criopreservación , Crioprotectores , Cabras , Preservación de Semen , Animales , Masculino , Criopreservación/métodos , Criopreservación/veterinaria , Antioxidantes/farmacología , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Crioprotectores/farmacología , Espermatozoides/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Semen/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Análisis de Semen , Membrana Celular/efectos de los fármacos
4.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067495

RESUMEN

Increasing antimicrobial resistance to the action of existing antibiotics has prompted researchers to identify new natural molecules with antimicrobial potential. In this study, a green system was developed for biosynthesizing gold nanoparticles (BAuNPs) using sage (Salvia officinalis L.) leaf extract bioconjugated with non-toxic, eco-friendly, and biodegradable chitosan, forming chitosan/gold bioconjugates (Chi/BAuNPs). Characterization of the BAuNPs and Chi/BAuNPs conjugates takes place using transmission electron microscopy (TEM), X-ray spectra, Fourier transform infrared (FT-IR) spectroscopy, and zeta potential (Z-potential). The chemical composition of S. officinalis extract was evaluated via gas chromatography/mass spectrometry (GC/MS). This study evaluated the antioxidant and antimicrobial activities of human pathogenic multidrug-resistant (MDR) and multisensitive (MS) bacterial isolates using the agar diffusion method. Chi/BAuNPs showed inhibition of the MDR strains more effectively than BAuNPs alone as compared with a positive standard antibiotic. The cytotoxicity assay revealed that the human breast adenocarcinoma cancer cells (MCF7) were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites compared to non-malignant human fibroblast cells (HFs). The study shows that BAuNPs and Chi/BAuNPs, combined with 5-FU NPs, can effectively treat cancer at concentrations where the free chemical drug (5-Fu) is ineffective, with a noted reduction in the required dosage for noticeable antitumor action.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Quitosano , Nanopartículas del Metal , Salvia officinalis , Humanos , Oro/química , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fluorouracilo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tecnología Química Verde/métodos
5.
Res Vet Sci ; 152: 569-578, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36191510

RESUMEN

This study aims to explore the functional role of Myoz2 in myoblast differentiation, and elucidate the potential factors interact with Myoz2 in promoter transcriptional regulation. The temporal-spatial expression results showed that the bovine Myoz2 gene was highest expressed in longissimus dorsi, and in individual growth stages and myoblast differentiation stages. Knockdown of Myoz2 inhibited the differentiation of myoblast, and negative effect of MyoD, MyoG, MyH and MEF2A expression on mRNA levels. Subsequently, the promoter region of bovine Myoz2 gene with 1.7 Kb sequence was extracted, and then it was set as eight series of deleted fragments, which were ligated into pGL3-basic to detect core promoter regions of Myoz2 gene in myoblasts and myotubes. Transcription factors MyoD and MyoG were identified as important cis-acting elements in the core promoter region (-159/+1). Also, it was highly conserved in different species based on dual-luciferase analysis and multiple sequence alignment analysis, respectively. Furthermore, a chromatin immunoprecipitation (ChIP) analysis combined with site-directed mutation and siRNA interference and overexpression confirmed that the combination of MyoD and MyoG occurred in region -159/+1, and played an important role in the regulation of bovine Myoz2 gene. These findings explored the regulatory network mechanism of Myoz2 gene during the development of bovine skeletal muscle.


Asunto(s)
Proteína MioD , Mioblastos , Bovinos , Animales , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/fisiología , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Desarrollo de Músculos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...