Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Infect Dis ; 24(1): 1229, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39487391

RESUMEN

BACKGROUND: Globally, sexually transmitted infections (STIs) collectively cause 2.3 million deaths and 1.2 million cases of cancer annually. However, the epidemiology of STIs in the Middle East and North Africa (MENA) is not well assessed because of various social and cultural factors. METHODS: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and covering 23 MENA countries, 19 STIs, and data from 20,435,971 participants. PubMed, Embase, regional and international databases, and country-level reports were searched up to May 2024. RESULTS: The analysis revealed significant regional variations in the prevalence of STIs within the MENA region. In North Africa, the most common STIs were bacterial vaginosis (31%), human papillomavirus (HPV, 23%), and Candida spp. (15%). In the Gulf Cooperation Council region and Yemen, Ureaplasma (25%), nongonococcal urethritis (NGU, 16%), and Mycoplasma spp. (12%) were the predominant infections. In the Levant region, the top STIs were HPV (20%), hepatitis B virus (HBV, 9%), and Candida spp. (9%). In Iran, Ureaplasma spp. (18%), HPV (17%), and cytomegalovirus (8%) were the most prevalent infections, whereas Ureaplasma spp. (20%), Candida spp. (18%), and HPV (16%) were most frequently detected in Türkiye. Gender-based disparities were observed, with a higher prevalence of Ureaplasma spp., Neisseria gonorrhoeae, and herpes in men and higher rates of Mycoplasma spp., HPV, HBV, and Candida spp. in women. Overall, high rates of nongonococcal urethritis (16.3%), Ureaplasma spp. (13.7%), HPV (12.7%), and Candida spp. (9.4%) were recorded in the MENA region. CONCLUSIONS: Most MENA countries lack national STI screening programs, and the reported data are primarily from symptomatic individuals. Establishing robust surveillance systems, addressing stigma and barriers to healthcare access, and expanding STIs screening and vaccination programs are crucial for accurately capturing the true burden of STIs in MENA countries.


Asunto(s)
Enfermedades de Transmisión Sexual , Humanos , Medio Oriente/epidemiología , África del Norte/epidemiología , Enfermedades de Transmisión Sexual/epidemiología , Prevalencia , Femenino , Masculino , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/virología
2.
J Infect Public Health ; 17(7): 102452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820895

RESUMEN

BACKGROUND: Amidst the persistent global health threat posed by the evolving SARS-CoV-2 virus throughout the four-year-long COVID-19 pandemic, the focus has now turned to the Omicron variant and its subvariant, JN.1, which has rapidly disseminated worldwide. This study reports on the characteristics and clinical manifestations of patients during the surge of the JN.1 variant in Saudi Arabia; it also investigates the evolution of SARS-CoV-2 variants in organ transplant patients and identifies patient risk factors. METHODS: A total of 151 nasopharyngeal samples from patients with PCR-confirmed SARS-CoV-2 infection were collected between September 2023 and January 2024. Demographic and clinical data of the patients were obtained from electronic health records. All confirmed positive samples underwent sequencing using Ion GeneStudio and the Ion AmpliSeq™ SARS-CoV-2 panel. RESULTS: During the surge of the JN.1 variant, the average age of the patients was 40 years, ranging from 3 to 93 years, and nearly 50% of the patients were male. Our investigation revealed that the J.N variant predominantly infected patients with comorbidities or organ transplant recipients (57.6%). Moreover, patients with comorbidities or organ transplants exhibited a higher number of mutations. In our organ transplant cohort, an increased total number of spike mutations was associated with a lower risk of developing severe disease (OR = 0.96, 95% CI: 0.93-0.98). CONCLUSIONS: Although JN.1 may not prove to be particularly harmful, it is crucial to recognize the persistent emergence of concerning variants, which create new pathways for the virus to evolve. The ongoing evolution of SARS-CoV-2 is evident in the continuous divergence of these variants from the original strain that marked the onset of the pandemic nearly four years ago.


Asunto(s)
COVID-19 , Trasplante de Órganos , SARS-CoV-2 , Receptores de Trasplantes , Humanos , Arabia Saudita/epidemiología , COVID-19/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , SARS-CoV-2/genética , Adolescente , Adulto Joven , Niño , Preescolar , Anciano de 80 o más Años , Receptores de Trasplantes/estadística & datos numéricos , Trasplante de Órganos/efectos adversos , Factores de Riesgo
3.
Microorganisms ; 12(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543518

RESUMEN

The genome of severe acute respiratory coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has undergone a rapid evolution, resulting in the emergence of multiple SARS-CoV-2 variants with amino acid changes. This study aimed to sequence the whole genome of SARS-CoV-2 and detect the variants present in specimens from Saudi Arabia. Furthermore, we sought to analyze and characterize the amino acid changes in the various proteins of the identified SARS-CoV-2 variants. A total of 1161 samples from patients diagnosed with COVID-19 in Saudi Arabia, between 1 April 2021 and 31 July 2023, were analyzed. Whole genome sequencing was employed for variant identification and mutation analysis. The statistical analysis was performed using the Statistical Analytical Software SAS, version 9.4, and GraphPad, version 9.0. This study identified twenty-three variants and subvariants of SARS-CoV-2 within the population, with the Omicron BA.1 (21K) variant (37.0%) and the Delta (21J) variant (12%) being the most frequently detected. Notably, the Omicron subvariants exhibited a higher mean mutation rate. Amino acid mutations were observed in twelve proteins. Among these, the spike (S), ORF1a, nucleocapsid (N), and ORF1b proteins showed a higher frequency of amino acid mutations compared to other the viral proteins. The S protein exhibited the highest incidence of amino acid mutations (47.6%). Conversely, the ORF3a, ORF8, ORF7a, ORF6, and ORF7b proteins appeared more conserved, demonstrating the lowest percentage and frequency of amino acid mutations. The investigation of structural protein regions revealed the N-terminal S1 subunit of the S protein to frequently harbor mutations, while the N-terminal domain of the envelope (E) protein displayed the lowest mutation frequency. This study provides insights into the variants and genetic diversity of SARS-CoV-2, underscoring the need for further research to comprehend its genome evolution and the occurrence of mutations. These findings are pertinent to the development of testing approaches, therapeutics, and vaccine strategies.

4.
Diagnostics (Basel) ; 14(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38248079

RESUMEN

Human cytomegalovirus (HCMV) infection may be asymptomatic in healthy individuals but can cause severe complications in immunocompromised patients, including transplant recipients. Breakthrough and drug-resistant HCMV infections in such patients are major concerns. Clinicians are first challenged to accurately diagnose HCMV infection and then to identify the most effective antiviral drug and determine when to initiate therapy, alter drug dosage, or switch medication. This review critically examines HCMV diagnostics approaches, particularly for immunocompromised patients, and the development of genotypic techniques to rapidly diagnose drug resistance mutations. The current standard method to identify prevalent and well-known resistance mutations involves polymerase chain reaction amplification of UL97, UL54, and UL56 gene regions, followed by Sanger sequencing. This method can confirm clinical suspicion of drug resistance as well as determine the level of drug resistance and range of cross-resistance with other drugs. Despite the effectiveness of this approach, there remains an urgent need for more rapid and point-of-care HCMV diagnosis, allowing for timely lifesaving intervention.

5.
Microorganisms ; 11(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37317262

RESUMEN

SARS-CoV-2 genomic mutations outside the spike protein that may increase transmissibility and disease severity have not been well characterized. This study identified mutations in the nucleocapsid protein and their possible association with patient characteristics. We analyzed 695 samples from patients with confirmed COVID-19 in Saudi Arabia between 1 April 2021, and 30 April 2022. Nucleocapsid protein mutations were identified through whole genome sequencing. 𝜒2 tests and t tests assessed associations between mutations and patient characteristics. Logistic regression estimated the risk of intensive care unit (ICU) admission or death. Of the 60 mutations identified, R203K was the most common, followed by G204R, P13L, E31del, R32del, and S33del. These mutations were associated with reduced risk of ICU admission. P13L, E31del, R32del, and S33del were also associated with reduced risk of death. By contrast, D63G, R203M, and D377Y were associated with increased risk of ICU admission. Most mutations were detected in the SR-rich region, which was associated with low risk of death. The C-tail and central linker regions were associated with increased risk of ICU admission, whereas the N-arm region was associated with reduced ICU admission risk. Consequently, mutations in the N protein must be observed, as they may exacerbate viral infection and disease severity. Additional research is needed to validate the mutations' associations with clinical outcomes.

6.
Biotechniques ; 74(2): 69-75, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36794696

RESUMEN

The global demand for rapid identification of circulating SARS-CoV-2 variants of concern has led to a shortage of commercial kits. Therefore, this study aimed to develop and validate a rapid, cost-efficient genome sequencing protocol to identify circulating SARS-CoV-2 (variants of concern). Sets of primers flanking the SARS-CoV-2 spike gene were designed, verified and then validated using 282 nasopharyngeal positive samples for SARS-CoV-2. Protocol specificity was confirmed by comparing these results with SARS-CoV-2 whole-genome sequencing of the same samples. Out of 282 samples, 123 contained the alpha variant, 78 beta and 13 delta, which were indicted using in-house primers and next-generation sequencing; the numbers of variants found were 100% identical to the reference genome. This protocol is easily adaptable for detection of emerging variants during the pandemic.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Cartilla de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
7.
Viruses ; 16(1)2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38257726

RESUMEN

RNA viruses, including SARS-CoV-2, rely on genetic mutation as a major evolutionary mechanism, leading to the emergence of variants. Organ transplant recipients (OTRs) may be particularly vulnerable to such mutations, making it crucial to monitor the spread and evolution of SARS-CoV-2 in this population. This cohort study investigated the molecular epidemiology of SARS-CoV-2 by comparing the SARS-CoV-2 whole genome, demographic characteristics, clinical conditions, and outcomes of COVID-19 illness among OTRs (n = 19) and non-OTRs with (n = 38) or without (n = 30) comorbid conditions. Most patients without comorbidities were female, whereas most OTRs were male. Age varied significantly among the three groups: patients with comorbidities were the oldest, and patients without comorbidities were the youngest. Whole-genome sequencing revealed that OTRs with mild disease had higher numbers of unusual mutations than patients in the other two groups. Additionally, OTRs who died had similar spike monoclonal antibody resistance mutations and 3CLpro mutations, which may confer resistance to nirmatrelvir, ensitrelvir, and GC37 therapy. The presence of those unusual mutations may impact the severity of COVID-19 illness in OTRs by affecting the virus's ability to evade the immune system or respond to treatment. The higher mutation rate in OTRs may also increase the risk of the emergence of new virus variants. These findings highlight the importance of monitoring the genetic makeup of SARS-CoV-2 in all immunocompromised populations and patients with comorbidity.


Asunto(s)
COVID-19 , Trasplante de Órganos , Humanos , Femenino , Masculino , SARS-CoV-2/genética , COVID-19/epidemiología , Epidemiología Molecular , Estudios de Cohortes , Trasplante de Órganos/efectos adversos
8.
Proc Natl Acad Sci U S A ; 119(28): e2118260119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35763567

RESUMEN

Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/µL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.


Asunto(s)
Proteínas Bacterianas , COVID-19 , Proteínas Asociadas a CRISPR , Clostridiales , Endodesoxirribonucleasas , Pruebas en el Punto de Atención , SARS-CoV-2 , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Biotecnología , COVID-19/diagnóstico , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/genética , Clostridiales/enzimología , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/clasificación , Endodesoxirribonucleasas/genética , Estabilidad de Enzimas , Calor , Humanos , Filogenia , SARS-CoV-2/aislamiento & purificación
9.
ACS Synth Biol ; 11(1): 406-419, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34939798

RESUMEN

Simple, rapid, specific, and sensitive point-of-care detection methods are needed to contain the spread of SARS-CoV-2. CRISPR/Cas9-based lateral flow assays are emerging as a powerful alternative for COVID-19 diagnostics. Here, we developed Bio-SCAN (biotin-coupled specific CRISPR-based assay for nucleic acid detection) as an accurate pathogen detection platform that requires no sophisticated equipment or technical expertise. Bio-SCAN detects the SARS-CoV-2 genome in less than 1 h from sample collection to result. In the first step, the target nucleic acid sequence is isothermally amplified in 15 min via recombinase polymerase amplification before being precisely detected by biotin-labeled nuclease-dead SpCas9 (dCas9) on commercially available lateral flow strips. The resulting readout is visible to the naked eye. Compared to other CRISPR-Cas-based pathogen detection assays, Bio-SCAN requires no additional reporters, probes, enhancers, reagents, or sophisticated devices to interpret the results. Bio-SCAN is highly sensitive and successfully detected a clinically relevant level (4 copies/µL) of synthetic SARS-CoV-2 RNA genome. Similarly, Bio-SCAN showed 100% negative and 96% positive predictive agreement with RT-qPCR results when using clinical samples (86 nasopharyngeal swab samples). Furthermore, incorporating variant-specific sgRNAs in the detection reaction allowed Bio-SCAN to efficiently distinguish between the α, ß, and δ SARS-CoV-2 variants. Also, our results confirmed that the Bio-SCAN reagents have a long shelf life and can be assembled locally in nonlaboratory and limited-resource settings. Furthermore, the Bio-SCAN platform is compatible with the nucleic acid quick extraction protocol. Our results highlight the potential of Bio-SCAN as a promising point-of-care diagnostic platform that can facilitate low-cost mass screening for SARS-CoV-2.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , Sistemas CRISPR-Cas , Sistemas de Atención de Punto , ARN Viral/genética , COVID-19/diagnóstico , COVID-19/genética , Humanos , SARS-CoV-2/genética
10.
BMJ Open ; 12(9): e060775, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36691215

RESUMEN

OBJECTIVE: To describe the chronological genomic evolution of SARS-CoV-2 and its impact on public health in the Middle East and North Africa (MENA) region. METHODS: This study analysed all available SARS-CoV-2 genomic sequences, metadata and rates of COVID-19 infection from the MENA region retrieved from the Global Initiative on Sharing All Influenza Data database from January 2020 to August 2021. Inferential and descriptive statistics were conducted to describe the epidemiology of SARS-CoV-2. RESULTS: Genomic surveillance of SARS-CoV-2 in the MENA region indicated that the variants in January 2020 predominately belonged to the G, GR, GH or O clades and that the most common variant of concern was Alpha. By August 2021, however, the GK clade dominated (57.4% of all sequenced genomes), followed by the G clade (18.7%) and the GR clade (11.6%). In August, the most commonly sequenced variants of concern were Delta in the Middle East region (91%); Alpha (44.3%) followed by Delta (29.7%) and Beta (25.3%) in the North Africa region; and Alpha (88.9%), followed by Delta (10%) in the fragile and conflict-affected regions of MENA. The mean proportion of the variants of concern among the total sequenced samples differed significantly by country (F=1.93, P=0.0112) but not by major MENA region (F=0.14, P=0.27) or by vaccination coverage (F=1.84, P=0.176). CONCLUSION: This analysis of the genomic surveillance of SARS-CoV-2 provides an essential description the virus evolution and its impact on public health safety in the MENA region. As of August 2021, the Delta variant showed a genomic advantage in the MENA region. The MENA region includes several fragile and conflict-affected countries with extremely low levels of vaccination coverage and little genomic surveillance, which may soon exacerbate the existing health crisis within those countries and globally.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios de Cohortes , África del Norte/epidemiología , Medio Oriente/epidemiología , Vacunación , Genómica , Evolución Molecular
11.
Viruses ; 15(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36680149

RESUMEN

Cervical cancer is the eighth most frequent cancer in Saudi Arabia, and most cases are associated with human papillomavirus (HPV) types 16 and 18. HPV-induced carcinogenesis may be associated with the intra-type variant, genetic mutation, or the continuous expression of viral oncogenes E6 and E7. Infection efficiency and virus antigenicity may be affected by changes in the L1 gene. Thus, this retrospective cohort study analyzed E6, E7, and L1 gene mutations in cervical specimens collected from Saudi women positive for HPV16 or HPV18 infection. HPV16 and HPV18 lineages in these specimens were predominantly from Europe. The L83V mutation in the E6 gene of HPV16 showed sufficient oncogenic potential for progression to cervical cancer. By contrast, the L28F mutation in the E7 gene of HPV16 was associated with a low risk of cervical cancer. Other specific HPV16 and HPV18 mutations were associated with an increased risk of cancer, cancer progression, viral load, and age. Four novel mutations, K53T, K53N, R365P, and K443N, were identified in the L1 gene of HPV16. These findings for HPV16 and HPV18 lineages and mutations in the E6, E7, and L1 genes among women in Saudi Arabia may inform the design and development of effective molecular diagnostic tests and vaccination strategies for the Saudi population.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas Oncogénicas Virales/genética , Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/genética , Neoplasias del Cuello Uterino/epidemiología , Arabia Saudita/epidemiología , Virus del Papiloma Humano , Proteínas Represoras/genética , Estudios Retrospectivos , Papillomavirus Humano 18/genética
12.
Front Bioeng Biotechnol ; 9: 800104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127671

RESUMEN

Rapid, specific, and sensitive detection platforms are prerequisites for early pathogen detection to efficiently contain and control the spread of contagious diseases. Robust and portable point-of-care (POC) methods are indispensable for mass screening of SARS-CoV-2. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based nucleic acid detection technologies coupled with isothermal amplification methods provide a straightforward and easy-to-handle platform for detecting SARS-CoV-2 at POC, low-resource settings. Recently, we developed iSCAN, a two-pot system based on coupled loop-mediated isothermal amplification (LAMP) and CRISPR/Cas12a reactions. However, in two-pot systems, the tubes must be opened to conduct both reactions; two-pot systems thus have higher inherent risks of cross-contamination and a more cumbersome workflow. In this study, we developed and optimized iSCAN-V2, a one-pot reverse transcription-recombinase polymerase amplification (RT-RPA)-coupled CRISPR/Cas12b-based assay for SARS-CoV-2 detection, at a single temperature in less than an hour. Compared to Cas12a, Cas12b worked more efficiently in the iSCAN-V2 detection platform. We assessed and determined the critical factors, and present detailed guidelines and considerations for developing and establishing a one-pot assay. Clinical validation of our iSCAN-V2 detection module with reverse transcription-quantitative PCR (RT-qPCR) on patient samples showed 93.75% sensitivity and 100% specificity. Furthermore, we coupled our assay with a low-cost, commercially available fluorescence visualizer to enable its in-field deployment and use for SARS-CoV-2 detection. Taken together, our optimized iSCAN-V2 detection platform displays critical features of a POC molecular diagnostic device to enable mass-scale screening of SARS-CoV-2 in low-resource settings.

13.
J Infect Dev Ctries ; 15(12): 1782-1791, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35044933

RESUMEN

INTRODUCTION: In December 2019, a new severe acute respiratory syndrome coronavirus, SARS-CoV-2, emerged in China, causing coronavirus disease 2019. The present study investigated genetic profiles and variations of SARS-CoV-2 distributed in different regions of Saudi Arabia to begin to understand the pathogenesis and transmission of SARS-CoV-2 in this country and analyzed associations of these variations with host factors. METHODOLOGY: In total, 774 SARS-CoV-2 genomic sequences obtained and annotated by the Global Initiative on Sharing All Influenza Data (GISAID) were captured and analyzed. RESULTS: The most common SARS-CoV-2 clades in Saudi Arabia were GH followed by O, GR, G, and S. Statistically significant associations were detected between clades and patient outcome. Age, as a host factor, was significantly associated with many variables, including virus geographical location, clade, and patient outcome. The most common variants detected were the NSP12_P323L mutation 94.9%, followed by the D614G mutation (76%) and the NS3_Q57H mutation (71.4%). The concerned variants B.1.1.7, B.1.351, and P.1 were not detected in our population. D614G was associated with higher morbidities than the wild-type virus, including higher rates of death and hospitalization. The NS3_Q57H mutation was the only variant associated with better patient outcome than the wild type. Risk of death was highest with the NSP12_P323L mutation (OR = 1.84; 95% CI = 0.37-9.30) and lowest with the NS3_Q57H mutation (OR = 0.43; 95% CI = 0.25-0.727). CONCLUSIONS: SARS-CoV-2 has evolved uniquely and independently in Saudi Arabia. Our findings provide evidence to begin linking the evolutionary implications to host factors and their effects on the virus severity and transmission.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2 , Adulto , Anciano , COVID-19/genética , COVID-19/transmisión , Femenino , Genoma Viral , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Pandemias , Arabia Saudita/epidemiología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...