Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38382296

RESUMEN

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Asunto(s)
Células Endoteliales , Eritropoyetina , Animales , Ratones , Hiperplasia , Hibridación Fluorescente in Situ , Miocitos Cardíacos , ARN , ARN Mensajero/genética
2.
Somatosens Mot Res ; 36(3): 230-240, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509053

RESUMEN

Purpose: Skin contributes to joint position sense (JPS) at multiple joints. Altered cutaneous input at the foot can modulate gait and balance and kinesiology tape can enhance proprioception at the knee, but its effect may be dependent on existing capacity. The effect of texture at the knee, particularly in those with poor proprioception, is unknown. The aim of this study was to determine the effect of textured panels on JPS about the knee. Materials and methods: Eighteen healthy females were seated in an adjustable chair. Their left leg (target limb) moved passively from 65° to a target of flexion (115° or 90°) or extension (40°). Their right leg (matching limb) was passively moved towards this target angle and participants indicated when their limbs felt aligned. We tested three textured panels over the knee of the matching limb and two control conditions. The target limb maintained a control panel. Directional error, absolute error and variable error in matching between limbs were calculated. Results: On average textured panels over the knee increased JPS error compared to control pants for participants with poor JPS. These participants undershot the target at 90° of flexion significantly more with textured panels (-11° ± 3°) versus control (-7° ± 3°, p = 0.04). Conclusions: For participants with poor JPS accuracy, increased JPS error at 90° with a textured panel suggests these individuals utilised altered cutaneous information to adjust joint position. We propose increased error results from enhanced skin input at the knee leading to the perception of increased flexion.


Asunto(s)
Articulación de la Rodilla/fisiología , Propiocepción/fisiología , Fenómenos Fisiológicos de la Piel , Percepción del Tacto/fisiología , Adulto , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...