Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 94(4): 1949-1957, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040640

RESUMEN

Size-based separation of particles in microfluidic devices can be achieved using arrays of micro- or nanoscale posts using a technique known as deterministic lateral displacement (DLD). To date, DLD arrays have been limited to parallelogram or rotated-square arrangements of posts, with various post shapes having been explored in these two principal arrangements. This work examines a new DLD geometry based on patterning obtainable through self-assembly of single-layer nanospheres, which we call hexagonally arranged triangle (HAT) geometry. Finite element simulations are used to characterize the DLD separation properties of the HAT geometry. The relationship between the array angle, the gap spacing, and the critical diameter for separation is derived for the HAT geometry and expressed in a similar mathematical form as conventional parallelogram and rotated-square DLD arrays. At array angles <7°, HAT structures demonstrate smaller particle sorting capability (smaller critical diameter-to-gap spacing ratio) compared to published experimental results for parallelogram-type DLD arrays with circular posts. Experimental validation of DLD separation confirms the separation ability of the HAT array geometry. It is envisioned that this work will provide the first step toward future implementation of nanoscale DLD arrays fabricated by low-cost, bottom-up self-assembly approaches.


Asunto(s)
Técnicas Analíticas Microfluídicas , Dispositivos Laboratorio en un Chip , Tamaño de la Partícula
2.
Sci Adv ; 7(29)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34261646

RESUMEN

The emergence of soft robots has presented new challenges associated with controlling the underlying fluidics of such systems. Here, we introduce a strategy for additively manufacturing unified soft robots comprising fully integrated fluidic circuitry in a single print run via PolyJet three-dimensional (3D) printing. We explore the efficacy of this approach for soft robots designed to leverage novel 3D fluidic circuit elements-e.g., fluidic diodes, "normally closed" transistors, and "normally open" transistors with geometrically tunable pressure-gain functionalities-to operate in response to fluidic analogs of conventional electronic signals, including constant-flow ["direct current (DC)"], "alternating current (AC)"-inspired, and preprogrammed aperiodic ("variable current") input conditions. By enabling fully integrated soft robotic entities (composed of soft actuators, fluidic circuitry, and body features) to be rapidly disseminated, modified on demand, and 3D-printed in a single run, the presented design and additive manufacturing strategy offers unique promise to catalyze new classes of soft robots.

3.
Lab Chip ; 19(17): 2799-2810, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31334525

RESUMEN

In situ direct laser writing (isDLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for isDLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing (e.g., operational pressures <50-75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for isDLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) "2.5D" functionally static fluidic barriers (10-100 µm in height), which supported uncompromised structure-to-channel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvessel-inspired structures (inner diameters < 10 µm) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based isDLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits.

4.
Sci Rep ; 9(1): 394, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674934

RESUMEN

Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers significant geometric versatility at submicron length scales. Although these characteristics hold promise for fields including organ modeling and microfluidic processing, difficulties associated with facilitating the macro-to-micro interfaces required for fluid delivery have limited the utility of DLW for such applications. To overcome this issue, here we report an in-situ DLW (isDLW) strategy for creating 3D nanostructured features directly inside of-and notably, fully sealed to-sol-gel-coated elastomeric microchannels. In particular, we investigate the role of microchannel geometry (e.g., cross-sectional shape and size) in the sealing performance of isDLW-printed structures. Experiments revealed that increasing the outward tapering of microchannel sidewalls improved fluidic sealing integrity for channel heights ranging from 10 µm to 100 µm, which suggests that conventional microchannel fabrication approaches are poorly suited for isDLW. As a demonstrative example, we employed isDLW to 3D print a microfluidic helical coil spring diode and observed improved flow rectification performance at higher pressures-an indication of effective structure-to-channel sealing. We envision that the ability to readily integrate 3D nanostructured fluidic motifs with the entire luminal surface of elastomeric channels will open new avenues for emerging applications in areas such as soft microrobotics and biofluidic microsystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...