Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 16: 1379431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867846

RESUMEN

Background: Taurine, an amino acid abundantly found in the brain and other tissues, has potential neuroprotective properties. Alzheimer's disease (AD) is a commonly occurring type of dementia, which becomes more prevalent as people age. This experiment aimed to assess the neuroprotective effects of taurine on SH-SY5Y cells by examining its impact on Dihydrotestosterone (DHT), Dihydroprogesterone (DHP), as well as the expression of miRNA-21 and miRNA-181. Methods: The effects of various taurine concentrations (0.25, and 0.75 mg/mL), and LPS (0.1, and 12 mg/mL) on the SH-SY5Y cell line were assessed using the MTT assay. The levels of DHT and DHP were quantified using an ELISA kit. Additionally, the expression levels of miRNA-181 and miRNA-21 genes were examined through Real-Time PCR analysis. Results: The results of the MTT assay showed that treatment with taurine at concentrations of 0.25, and 0.75 mg/mL reduces the toxicity of LPS in SH-SY5Y cells. ELISA results indicated that taurine at a concentration of 0.25, and 0.75 mg/mL significantly elevated DHT and DHP hormones in the SH-SY5Y cell line compared to the untreated group (p < 0.01). The expression levels of IL-1ß and IL-6 were decreased under the influence of LPS in SH-SY5Y cells after taurine treatment (p < 0.01). Gene expression analysis revealed that increasing taurine concentration resulted in heightened expression of miRNA-181 and miRNA-21, with the most significant increase observed at a concentration of 0.75 mg/mL (p < 0.001). Conclusion: Our study findings revealed that the expression of miRNA-181 and miRNA-21 can be enhanced by taurine. Consequently, exploring the targeting of taurine, miRNA-181, and miRNA-21 or considering hormone therapy may offer potential therapeutic approaches for treating AD or alleviating severe symptoms. Nonetheless, in order to fully comprehend the precise mechanisms involved, additional research is required.

2.
Int Immunopharmacol ; 133: 112021, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626549

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.


Asunto(s)
Retinopatía Diabética , Quempferoles , Macrófagos , Microglía , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/inmunología , Retinopatía Diabética/patología , Microglía/efectos de los fármacos , Microglía/inmunología , Quempferoles/farmacología , Quempferoles/uso terapéutico , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Progresión de la Enfermedad , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Retina/efectos de los fármacos , Retina/patología , Retina/inmunología , Línea Celular , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/uso terapéutico , Modelos Animales de Enfermedad
3.
Med Res Rev ; 44(1): 235-274, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37486109

RESUMEN

Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.


Asunto(s)
Envejecimiento , Polifenoles , Humanos , Polifenoles/farmacología , Resveratrol , Antioxidantes , Especies Reactivas de Oxígeno/metabolismo
4.
Inflammopharmacology ; 31(6): 3047-3062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955785

RESUMEN

Curcuma longa extract and its marker curcuminoids have potential use in inflammatory conditions. However, curcuminoids solubility and bioavailability are major hindrances to their bioactivity. The current study investigated green extraction-based curcuminoids-enriched extract (CRE) prepared from C. longa and its cyclodextrin inclusion complexes, i.e., binary inclusion complexes (BC) and ternary inclusion complexes (TC), in complete Freund's adjuvant (CFA)-induced mice for their comparative anti-arthritic efficacy. CRE, BC, and TC (2.5 and 5 mg/kg) with the standard drug diclofenac sodium (13.5 mg/kg) were orally administered to mice for 4 weeks. Variations in body weight, hematological and biochemical parameters, along with gene expression analysis of arthritis biomarkers, were studied in animals. The histopathological analysis and radiographic examination of joints were also performed. CRE, BC and TC treatment significantly restored the arthritic index, histopathology and body weight changes. The concentration of C-reactive protein, rheumatoid factor and other liver function parameters were significantly recovered by curcuminoids formulations. The pro-inflammatory cytokines (NF-κB, COX-2, IL-6, IL-1ß, and TNF-α) gene expression was considerably (p < 0.001) downregulated, while on the other side, the anti-inflammatory genes IL-4 and IL-10 were upregulated by the use of CRE and its complexes. The concentration of antioxidant enzymes was considerably (P < 0.001) recovered by CRE, BC and TC with marked decrease in lipid peroxidation, erosion of bone, inflammation of joints and pannus formation in comparison to arthritic control animals. Therefore, it is concluded that green CRE and its cyclodextrin formulations with enhanced solubility could be considered as an applicable therapeutic choice to treat chronic polyarthritis.


Asunto(s)
Artritis Experimental , Ratones , Animales , Adyuvante de Freund , Artritis Experimental/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estrés Oxidativo , Citocinas/metabolismo , Biomarcadores/metabolismo , Peso Corporal
5.
Metab Brain Dis ; 38(7): 2255-2267, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37458892

RESUMEN

Aggression, a highly prevalent behavior among all the psychological disorders having strong association with psychiatric imbalance, neuroendocrine changes and neurological disturbances (including oxidative stress & neuroinflammation) require both pharmacological and non-pharmacological treatments. Focusing the preclinical neuroendocrine determinants of aggression, this interventional study was designed to elucidate the curative effect of antioxidants on aggression in male mice. Adult albino male mice (n = 140) randomly divided into two main treatment groups for α-lipoic acid (ALA) and silymarin with 5 subgroups (n = 10) for each curative study, namely control, disease (aggression-induced), standard (diazepam, 2.5 mg/kg), low dose (100 mg/kg) and high dose (200 mg/kg) treatment groups of selected antioxidants. Resident-intruder paradigm and levodopa (L-dopa 375 mg/kg, p.o.) induced models were used for aggression. Effect of antioxidant treatment (i.e., 21 days bid) on aggression was assessed by evaluating the changes in aggressive behavior, oxidative stress biomarkers superoxide dismutase, catalase, glutathione, nitrite and malondialdehyde (SOD, CAT, GSH, nitrite & MDA), neurotransmitters (dopamine, nor-adrenaline and serotonin), pro-inflammatory cytokines tumor necrosis factor-α and interleukin- 6 (TNF-α & IL-6) along with serum testosterone examination. This study showed potential ameliorative effect on aggressive behavior with both low (100 mg/kg) and high (200 mg/kg) doses of antioxidants (ALA & silymarin). Resident-intruder or L-dopa induced aggression in male mice was more significantly tuned with ALA treatment than silymarin via down regulating both oxidative stress and inflammatory biomarkers. ALA also exhibited notable effects in managing aggression-induced disturbances on plasma testosterone levels. In conclusion, ALA is more effective than silymarin in attenuating aggression in mice.


Asunto(s)
Silimarina , Ácido Tióctico , Masculino , Ratones , Animales , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Silimarina/farmacología , Silimarina/uso terapéutico , Levodopa/farmacología , Nitritos/farmacología , Estrés Oxidativo , Glutatión/metabolismo , Agresión , Biomarcadores/metabolismo , Testosterona
6.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771180

RESUMEN

Wilson's disease causes copper accumulation in the liver and extrahepatic organs. The available therapies aim to lower copper levels by various means. However, a potent drug that can repair the damaged liver and brain tissue is needed. Silymarin has hepatoprotective, antioxidant, and cytoprotective properties. However, poor oral bioavailability reduces its efficacy. In this study, a "thin film hydration method" was used for synthesizing silymarin-encapsulated liposome nanoparticles (SLNPs) and evaluated them against copper toxicity, associated liver dysfunction and neurobehavioral abnormalities in Wistar rats. After copper toxicity induction, serological and behavioral assays were conducted to evaluate treatment approaches. Histological examination of the diseased rats revealed severe hepatocyte necrosis and neuronal vacuolation. These cellular degenerations were mild in rats treated with SLNPs and a combination of zinc and SLNPs (ZSLNPs). SLNPs also decreased liver enzymes and enhanced rats' spatial memory significantly (p = 0.006) in the diseased rats. During forced swim tests, SLNPs treated rats exhibited a 60-s reduction in the immobility period, indicating reduced depression. ZSLNPs were significantly more effective than traditional zinc therapy in decreasing the immobility period (p = 0.0008) and reducing liver enzymes, but not in improving spatial memory. Overall, SLNPs enhanced oral silymarin administration and managed copper toxicity symptoms.


Asunto(s)
Degeneración Hepatolenticular , Silimarina , Ratas , Animales , Ratas Wistar , Silimarina/uso terapéutico , Cobre/farmacología , Liposomas/farmacología , Hígado , Degeneración Hepatolenticular/tratamiento farmacológico , Zinc/farmacología , Zinc/uso terapéutico
7.
Metab Brain Dis ; 38(3): 1051-1066, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437394

RESUMEN

Parkinson's disease (PD) is slowly developing neurodegenerative disorder associated with gradual decline in cerebration and laboriousness to perform routine piece of work. PD imposed a social burden on society through higher medical cost and by loss of social productivity in current era. The available treatment options are expensive and associated with serious adverse effect after long term use. Therefore, there is a critical clinical need to develop alternative pharmacotherapies from natural sources to prevent and cure the pathological hall marks of PD with minimal cost. Our study aimed to scrutinize the antiparkinsonian potential of curcuminoids-rich extract and its binary and ternary inclusion complexes. In healthy rats, 1 mg/kg haloperidol daily intraperitoneally, for 3 weeks was used to provoke Parkinsonism like symptoms except control group. Curcuminoids rich extract, binary and ternary inclusion complexes formulations 15-30 mg/kg, L-dopa and carbidopa (100 + 25 mg/kg) were orally administered on each day for 3 weeks. Biochemical, histopathological and RT-qPCR analyses were conducted after neurobehavioral observations. Findings of current study indicated that all curcuminoids formulations markedly mitigated the behavioral abnormalities, recovered the level of antioxidant enzymes, acetylcholinesterase inhibitory activity and neurotransmitters. Histological analysis revealed that curcuminoids supplements stabilized the neuronal loss, pigmentation and Lewy bodies' formation. The mRNA expressions of neuro-inflammatory and specific PD pathological biomarkers were downregulated by treatment with curcuminoids formulations. Therefore, it is suggested that these curcuminoids rich extract, binary and ternary supplements should be considered as promising therapeutic agents in development of modern anti-Parkinson's disease medications.


Asunto(s)
Diarilheptanoides , Enfermedad de Parkinson , Ratas , Animales , Diarilheptanoides/uso terapéutico , Haloperidol/farmacología , Haloperidol/uso terapéutico , Acetilcolinesterasa , Modelos Animales de Enfermedad , Enfermedad de Parkinson/tratamiento farmacológico
8.
J Therm Biol ; 110: 103346, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462855

RESUMEN

The function of a mammal is impacted by heat stress. This review considers the signs, symptoms, therapies, molecular reactions, histological changes, and effects of heat on protein metabolism in mammals. Heat stress is considered as a thermal injury model to the central nervous system (CNS), this review discusses the histopathological changes caused by heat stress on the CNS. Heat stress lowers metabolic rates, reduces feed intake and changes post-absorptive metabolism Heat stress disturbs the steady-state levels of free radicals, which in turn causes oxidative damage to both the mitochondria and the cells. Traditional and cutting-edge cooling techniques are covered in the management of heat stress.


Asunto(s)
Trastornos de Estrés por Calor , Animales , Trastornos de Estrés por Calor/veterinaria , Frío , Ingestión de Alimentos , Mitocondrias , Respuesta al Choque Térmico , Mamíferos
9.
Res Pharm Sci ; 17(5): 493-507, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36386489

RESUMEN

Background and purpose: Osteoarthritis is a degenerative joint disease without definite treatment. It is characterized by intra-articular inflammation, cartilage degeneration, subchondral bone remodeling, and joint pain. The objective of the current study was to assess the anti-osteoarthritic effect and the possible underlying mechanism of action of Crataegus sinaica extract (CSE). Experimental approach: Intra-articular injection of monosodium iodoacetate in the right knee joint of all rats was done except for the sham group. One week later, the anti-inflammatory efficacy of CSE (100, 200, 300 mg/kg, daily p.o) for 4 successive weeks versus ibuprofen (40 mg/kg, p.o) was assessed. Serum inflammatory cytokines; as well as weekly assessment of knee joint swelling, joint mobility, and motor coordination were done. At the end of the experiment, a histopathological investigation of the affected knee joints and an x-ray investigation were also executed. Findings / Results: CSE significantly decreased joint swelling, pain behaviors, and serum levels of TNF-α, IL6, hyaluronic acid, and CTX-II. The radiographic findings revealed almost normal joint space with normal radiodensity and diameter in CSE-treated rats. As well, the histopathological and immunohistochemical investigations of the knee joints in CSE-treated groups retained the cartilage structure of knee joints. A significant reduction in the percentage of caspase-3-stained chondrocytes and a decrease in TGF-ß1 immuno-positive areas in the synovial lining and sub lining were recorded in CSE-treated rats, compared to the osteoarthritis control group. Conclusion and implications: This study approved the chondroprotective effects of CSE, and its ability to inhibit the pain associated with osteoarthritis.

10.
ACS Omega ; 7(15): 13164-13177, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474846

RESUMEN

Traditionally, Sarcococca saligna has been used for the treatment of arthritis and many other inflammatory disorders. The current study was planned to give scientific evidence to this traditional use of S. saligna. Phytochemical profiling of SSME was carried out by using electrospray ionization mass spectrometry (ESI-MS/MS). Complete Freund's adjuvant (CFA), 150 µL was injected in the subplantar region of the left hind paw to induce arthritis in rats. Aqueous methanolic extract of S. saligna (SSME) was administered orally at 250, 500, or 1000 mg/kg dose from the 7th day to the 28th day of the study to explore its anti-arthritic potential. Histopathological and radiographic assessment of joints and enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) analyses were performed. Determination of oxidative stress biomarkers in the serum was also carried out. ESI-MS/MS identified ten such phytoconstituents which have reported strong anti-inflammatory and anti-arthritic activity. The SSME extract considerably reduced paw inflammation and arthritic index, subdued cachexia, and significantly improved biochemical and hematological changes. Oxidative stress decreased in SSME administered rats dose-dependently. Histopathological and radiographic evaluations also showed the anti-arthritic activity of SSME, which was associated with the downregulation of tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB, COX-2, interleukin (IL)-6, and IL-1ß and upregulation of I-kB, IL-4, and IL-10, in contrast to disease group rats. The outcomes of the study proposed that S. saligna have anti-arthritic potential, supporting its traditional use for rheumatoid arthritis treatment.

11.
Biology (Basel) ; 11(2)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35205169

RESUMEN

Ulcerative colitis (UC) is the most common type of inflammatory bowel disease, characterized by oxidative stress and elevated pro-inflammatory cytokines. Miconazole is an azole antifungal that stimulates the expression of antioxidant enzymes via Nrf2 activation, which consequently inhibits ROS formation and NF-κB activation. Hence, the present study aimed to investigate the protective effect of miconazole, sulfasalazine (as a reference drug) and their combination on acetic acid (AA)-induced UC in a rat model which was induced by intra-rectal administration of 4% AA. Rats were pretreated with miconazole (20 and 40 mg/kg, orally) or sulfasalazine (100 mg/kg, orally), or their combination (20 mg/kg miconazole and 50 mg/Kg of sulfasalazine, orally). Pretreatment with miconazole significantly reduced wet colon weight and macroscopic scores, accompanied by a significant amelioration of the colonic architecture disorder. Moreover, the treatment also significantly decreased the malondialdehyde (MDA) level and prevented the depletion of superoxide dismutase (SOD) activity and GSH content in inflamed colons. Additionally, the treatment showed suppressive activities on pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP), and upregulated the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, the treatment upregulated the protein levels of Nrf-2 and heme oxygenase-1 (HO-1) in the colon tissue. Taken together, miconazole is effective in alleviating AA-induced colitis in rats, and the mechanism of its action is associated with the activation of Nrf2-regulated cytoprotective protein expression.

12.
Bioinorg Chem Appl ; 2022: 3977935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37388628

RESUMEN

The aqueous extract of red algae was used for bio-inspired manufacturing of cobalt oxide nanoparticles (Co3O4NPs) and for antioxidant, antibacterial, hemolytic potency, and anticancer activity. Typical, characterization techniques include UV-Vis, SEM, EDAX, TEM, FTIR, XRD, and TGA. Using an X-ray diffraction assay, the size of the Co3O4NPs crystal was determined to range from 23.2 to 11.8 nm. Based on TEM and SEM pictures, biosynthesized Co3O4NPs' had a homogeneous spherical morphology with a 28.8 to 7.6 nm average diameter. Furthermore, Co3O4NPs biological properties were investigated, including determining the antibacterial potency using the zone of inhibition (ZOI) method and determining the minimal inhibitory concentration (MIC). The antibacterial activity of Co3O4NPs was higher than that of the ciprofloxacin standard. Alternatively, scavenging of DPPH free radical investigation was carried out to test the antioxidant capacitance of Co3O4NPs, revealing significant antioxidant ability. The biosynthesized Co3O4NPs have a dose-dependent effect on erythrocyte viability, indicating that this technique is harmless. Furthermore, bioinspired Co3O4NPs effectively against HepG2 cancer cells (IC50: 201.3 µg/ml). Co3O4NPs would be a therapeutic aid due to their antioxidant, antibacterial, and anticancer properties.

13.
Biomed Res Int ; 2022: 2323078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36875821

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most common forms of diabetes. We are living in the middle of a global diabetes epidemic. Emerging pieces of evidence are suggesting the increased expression of protein tyrosine phosphatase 1B (PTP1B) in the pancreas and adipose tissues during T2DM. The negative regulation of the insulin signaling pathway by PTP1B helps the researchers to consider it as a potential therapeutic target for the treatment of insulin resistance and its associated complications. From the literature, we found that compound 5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxy-3-(3-methyl-2-enyl)phenyl)-4H-chromen-4-one (Viscosol) extracted from Dodonaea viscosa can inhibit PTP1B in vitro. Therefore, in this study, we aimed to evaluate the antidiabetic effect of this compound in a high-fat diet (HFD) and low-dose streptozotocin- (STZ-) induced T2DM mouse model. For this purpose, T2DM was induced in C57BL/6 male mice by using an already established protocol with minor modification. The compound-treated T2DM mice showed improvements in biochemical parameters, i.e., decrease in the fasting blood glucose level, increased body weight, improved liver profile, and reduction in oxidative stress. Furthermore, to elucidate the inhibition of PTP1B, the expression level of PTP1B was also measured at mRNA and protein levels by real-time PCR and western blot, respectively. Additionally, downstream targets (INSR, IRS1, PI3K, and GLUT4) were examined for confirming the inhibitory effect of PTP1B. Our results suggest that the compound can specifically inhibit PTP1B in vivo and might have the ability to improve insulin resistance and insulin secretion. Based on our experiment, we can confidently state that this compound can be a new PTP1B drug candidate for the treatment of T2DM in the coming future.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Hipoglucemiantes , Modelos Animales de Enfermedad
14.
Redox Biol ; 40: 101839, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486153

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction for which there is an unmet need for better treatment options. Although oxidative stress is a common feature of neurodegenerative diseases, notably PD, there is currently no efficient therapeutic strategy able to tackle this multi-target pathophysiological process. Based on our previous observations of the potent antioxidant and neuroprotective activity of SELENOT, a vital thioredoxin-like selenoprotein, we designed the small peptide PSELT from its redox active site to evaluate its antioxidant properties in vivo, and its potential polyfunctional activity in PD models. PSELT protects neurotoxin-treated dopaminergic neurons against oxidative stress and cell death, and their fibers against neurotoxic degeneration. PSELT is cell-permeable and acts in multiple subcellular compartments of dopaminergic neurons that are vulnerable to oxidative stress. In rodent models of PD, this protective activity prevented neurodegeneration, restored phosphorylated tyrosine hydroxylase levels, and led to improved motor skills. Transcriptomic analysis revealed that gene regulation by PSELT after MPP+ treatment negatively correlates with that occurring in PD, and positively correlates with that occurring after resveratrol treatment. Mechanistically, a major impact of PSELT is via nuclear stimulation of the transcription factor EZH2, leading to neuroprotection. Overall, these findings demonstrate the potential of PSELT as a therapeutic candidate for treatment of PD, targeting oxidative stress at multiple intracellular levels.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico
15.
Antioxid Redox Signal ; 24(11): 557-74, 2016 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-26866473

RESUMEN

AIMS: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. RESULTS: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. INNOVATION: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. CONCLUSIONS: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Oxidorreductasas/metabolismo , Enfermedad de Parkinson/metabolismo , Selenoproteínas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotoxinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/patología , Selenoproteínas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...