Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 876119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599879

RESUMEN

The continuous increase in the heavy metals concentration in the soil due to anthropogenic activities has become a global issue. The chromium, especially hexavalent chromium, is highly toxic for living organisms due to high mobility, solubility, and carcinogenic properties. Considering the beneficial role of nanoparticles and bacteria in alleviating the metal stress in plants, a study was carried out to evaluate the role of cerium dioxide (CeO2) nanoparticles (NPs) and Staphylococcus aureus in alleviating the chromium toxicity in sunflower plants. Sunflower plants grown in chromium (Cr) contaminated soil (0, 25, and 50 mg kg-1) were treated with CeO2 nanoparticles (0, 25, and 50 mg L-1) and S. aureus. The application of Cerium Dioxide Nanoparticles (CeO2 NPs) significantly improved plant growth and biomass production, reduced oxidative stress, and enhanced the enzymatic activities in the sunflower plant grown under chromium stress. The application of S. aureus further enhanced the beneficial role of nanoparticles in alleviating metal-induced toxicity. The maximum improvement was noted in plants treated with both nanoparticles and S. aureus. The augmented application of CeO2 NPs (50 mg l-1) at Cr 50 mg kg-1 increased the chl a contents from 1.2 to 2.0, chl b contents 0.5 to 0.8 and mg g-1 FW, and decreased the leakage of the electrolyte from 121 to 104%. The findings proved that the application of CeO2 nanoparticles and S. aureus could significantly ameliorate the metal-induced stress in sunflower plants. The findings from this study can provide new horizons for research in the application of nanoparticles in phytoremediation and bioremediation.

2.
PLoS One ; 17(5): e0263901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35533150

RESUMEN

H5N1 virus (H5N1V) is highly contagious among birds and it was first detected in humans in 1997 during a poultry outbreak in Hong Kong. As the mechanism of its pathogenesis inside the host is still lacking, in this in-silico study we hypothesized that H5N1V might create miRNAs, which could target the genes associated with host cellular regulatory pathways, thus provide persistent refuge to the virus. Using bioinformatics approaches, several H5N1V produced putative miRNAs as well as the host genes targeted by these miRNAs were found. Functional enrichment analysis of targeted genes revealed their involvement in many biological pathways that facilitate their host pathogenesis. Eventually, the microarray dataset (GSE28166) was analyzed to validate the altered expression level of target genes and found the genes involved in protein binding and adaptive immune responses. This study presents novel miRNAs and their targeted genes, which upon experimental validation could facilitate in developing new therapeutics against H5N1V infection.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Humana , MicroARNs , Antivirales , Humanos , Inmunidad , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , MicroARNs/genética , Unión Proteica
3.
Molecules ; 27(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458792

RESUMEN

Breynia distachia is a plant of genus Breynia belonging to family Phyllanthaceae. This study was conducted to isolate and examine the anti-inflammatory attributes of the roots of Breynia distachia. Methanol extract from roots were prepared by simple maceration. For phytochemical studies, isolation, purification, structure elucidation, metal analysis, total phenolic content, and solubility test were done by chromatographic and spectroscopic techniques. Anti-inflammatory activity was evaluated by cotton pallet edema model and carrageenan paw edema model, and antioxidant potential was evaluated by DPPH, FRAP, and ABTS antioxidants assays. Metal analysis of BD.Me revealed the presence of Na > Mg > K > Mn > Fe = Zn in respective order. Four phytochemicals such as gallic acid, quercetin, sinapic acid, and p-coumaric acid are found in Breynia distachia. Quercetin is present in relatively larger quantity, and shows antioxidant activity by reducing the ferric iron to ferrous iron. Novel distachionate shows high antioxidant activity in ABTS assay by reducing reactive oxygen species. Quantitative or qualitative analysis performed by HPLC indicates the ascending peaks or presence of secondary products (metabolites) respectively. Histopathology analysis of liver, spleen, heart, and kidney was done, revealing mild inflammations in spleen and liver, and no cytotoxicity in heart and kidney. Oral administration of BD.Me and ditachionate significantly inhibits the carrageenan and cotton pellet-induced paw edema in 1st and 2nd h with (ns = p > 0.05) than control. After 3rd, 4th, 5th, and 6th h, BD.Me and ditachionate showed inhibition of paw edema in a highly significant (*** = p < 0.001) manner as compared to control. In cotton-pellet edema model, distachionate shows a %inhibition of 57.3% at a dose level of 5 mg/kg. Docking values obtained from distachionate-COX-2 complex suggest a potent inhibitor evaluated for this protein. The distachionate shows effective anti-inflammatory activity. Methanol extracts of roots showed significant lipoxygenase inhibitory activity by IC50 values of 155.7 ± 0.55 and 132.9 ± 0.33 µg/mL. Data from various in vitro and in vivo models suggest that novel distachionate isolated from Breynia distachia shows strong antioxidant and anti-inflammatory activities; it should be further studied for the exploration of its medicinal potential.


Asunto(s)
Antioxidantes , Malpighiales , Animales , Antiinflamatorios/química , Antioxidantes/química , Carragenina/efectos adversos , Ciclooxigenasa 2 , Citocinas , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Hierro/efectos adversos , Hígado , Metanol/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Quercetina/uso terapéutico , Ratas
4.
Comput Biol Med ; 145: 105507, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429833

RESUMEN

Chlamydia pneumoniae, a pneumonia causing specie belonging to chlamydia bacterium. C. pneumonia is considered as a leading cause of pneumonia. Apart from that, C. pneumoniae infection can also cause a variety of inflammatory disorders. There is an urgent need to tackle the major concerns arises due to infections causing by C. pneumoniae as no licensed vaccine available against this bacterial infection. In the framework of this study, a core proteome was generated C. pneumoniae strains was generated which revealed a total of 4754 core proteins. Later, 4 target proteins were obtained from 4754 core proteins by applying subtractive proteomics pipeline. Finally, MEV construct was designed by applying reverse vaccinology-based immunoinformatics approach on four target proteins. Molecular docking analysis were conducted to better understand thermodynamic stability, binding affinities, and interaction of vaccine. The binding interactions of MEV construct against TLR4, MHCII and MHCII showed that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, MEV construct has a better binding energy of 103.7 ± 15.4, 72.1 ± 9.1, and 70.4 ± 16.0 kcal/mol against TLR4, MHCII and MHCI. MD simulation was run at 200ns on docked complexes which further strengthened the current findings. Respective codon of vaccine construct was optimized and then in silico cloned into an E. coli expression host to ensure maximum vaccine protein expression. Despite the fact that the in-silico analysis used in this research produced reliable results, more studies are needed to validate the effectiveness and performance of proposed vaccine candidate.


Asunto(s)
Chlamydophila pneumoniae , Vacunología , Biología Computacional/métodos , Epítopos de Linfocito T/química , Escherichia coli , Simulación del Acoplamiento Molecular , Proteómica , Receptor Toll-Like 4 , Vacunas de Subunidad
5.
Saudi J Biol Sci ; 29(3): 1337-1347, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280588

RESUMEN

Abiotic stress causes extensive loss to agricultural yield production worldwide. Salt stress is one of them crucial factor which leads to decreased the agricultural production through detrimental effect on growth and development of crops. In our study, we examined the effect of a defense growth substance, salicylic acid (SA 1 mM) on mature vegetative (60 Days after sowing) and flowering (80 DAS) stage of Pusa Sadabahar (PS) variety of Capsicum annuum L. plants gown under different concentrations of NaCl (25, 50, 75, 100 and 150 mM) and maintained in identical sets in pots during the whole experiment. Physiological studies indicated that increase in root & shoot length, fresh & dry weight, number of branches per plant, and yield (number of fruits per plant) under salt + SA treatment. Biochemical studies, enzymatic antioxidants like CAT, POX, and non-enzymatic antioxidant such as ascorbic acid (AsA content), carotenoids, phenolics, besides other defense compounds like proline, protein, chlorophyll contents were studied at 10 days after treatment at the mature vegetative and flowering stage. The addition of SA led to lowering of in general, all studied parameters in the mature vegetative stage but increased the same during the flowering stage, especially in the presence of NaCl; although the control I (without SA and NaCl) remained lower in value than control II (with SA, without NaCl). Interestingly, total phenolics were higher in control I (without SA or NaCl) whereas chlorophylls were higher in treatments with SA and NaCl. Thus, physiological concentration of SA (1 mM) appears to be significantly effective against salt stress during the flowering stage. In addition, during the mature vegetative stage, however, proline accumulates in SA treated sets, to help in developing NaCl-induced drought stress tolerance.

6.
Plants (Basel) ; 11(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35161217

RESUMEN

Cadmium (Cd) toxicity strongly influences plants growth and seed germination in crop plants. This pot trial had aimed evaluate the benefits of two different kinds of phosphorus (P)-fertilizer in the phytoremediation of Cd by Solanum nigrum L. The current pot experiment was conducted to evaluate the role of P-fertilizers in phytoremediation of Cd by Solanum nigrum L. Single superphosphate (SSP) contain 7 to 9% P and Di-ammonium Phosphate (DAP) contain 46% P had been applied in single and combine form in soil with different ratios (0:0, 100:0, 0:100, 50:50%) accompanied by diverse Cd levels (0, 25, 50 mg kg-1). Three weeks seeding were transferred into pots, and plants had been harvested afterward seventy days of growth in the pots. Significantly inhibited plant growth was observed in shoots and roots of Cd contaminated plants. Cadmium stress had stimulated oxidative stress in subjected plants. However, supplementation of P-fertilizers in an optimum manner significantly increased plant biomass along with enhancing antioxidants enzymatic activities and inhibiting oxidative stress. Maximum plant-growth had been noted in SSP + DAP supplemented plants in contrast to single SSP, DAP supplemented plants. Higher Cd concentrations observed in SSP + DAP supplemented plants over single treatment. It has been concluded that combination of SSP + DAP might be a better option to improve growth as well as uptake capacity of Solanum nigrum L. under Cd stress. However, a field study is recommended for detailed future investigations.

7.
Life (Basel) ; 12(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35207497

RESUMEN

Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, -0.5, -1.5, -1.0, and -2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to -0.5, -1, 1.5, and -2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is -0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at -2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at -2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity.

8.
Plants (Basel) ; 11(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35214884

RESUMEN

The aim of the study was to investigate the variation in nutritional composition, antioxidant, and antibacterial activities of tomatoes grown in fly ash blended soils, i.e.,T1 (soil 100% + 0% fly ash), T2 (soil 75%+ 25% fly ash), and T3 (soil 50% + 50% fly ash) soils. The tomato samples were harvested and screened for their proximate analysis, mineral composition, vitamin C contents, phenolic profile, and antioxidant and antibacterial activities. Results showed that T3 soil crop has high proximate composition, vitamin C, and phenolic contents as compared with T2 and T1 soil crops. Furthermore, significant variation in the elements analysis was observed in the crops grown in T1, T2, and T3 soils. T3 soil crop exhibited better antioxidant activity in term of total phenolic contents (TPC), total flavonoids contents (TFC), DPPH radical scavenging capacity, and ferric reducing potential as compared with T2 and T1 soil crops. Similarly, maximum inhibition zones were observed for T3 soil crop when tested for Staphylococcus aureus isolate 1 and 3 and methicillin-resistant Staphylococcus aureus (MRSA). In conclusion, the crop grown in T3 blended soil had high antioxidant and antibacterial potentials and better nutritional composition.

9.
Biomed Res Int ; 2022: 5397561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141333

RESUMEN

Statement of Novelty. Poultry feed contamination due to mycotoxins is one of the major threats to the growing poultry industry. Surveillance of different mycotoxins, including aflatoxin, is very important to control economic and health hazards associated with these toxins. Studies reporting aflatoxin levels in poultry feed are limited. Therefore, this study was conducted to examine the occurrence of total aflatoxin in poultry feed. This study is the first-ever documentation about the frequency and quantitative estimations of total aflatoxin levels in poultry feed consumed to provide solid feedback to the poultry industrialists and researchers involved in studying the mycotoxins. Objective. Contamination of poultry feed with mycotoxins such as aflatoxin is a major concern for the poultry industry that results in a significant economic loss and directly affects consumers. Monitoring the aflatoxin levels in poultry feed is crucial for controlling economic loss and decreasing the health hazards to the population. This study was conducted to examine the occurrence of total aflatoxin in poultry feed in a high consumption area. Three different poultry feeds, i.e., starter, grower, and finisher, were assessed through continuous sampling from farms. The incidence of positive samples for aflatoxin contamination was 92.5%. Grower feed had the highest frequency (100%) of aflatoxin positive samples and aflatoxin levels with a mean value of 56.34 ppb. Further, the range of moisture content was around 6.8%-10.98%. No significant correlation between humidity and aflatoxin contamination was revealed when analyzed by Pearson's correlation coefficient with r 2 of 0.05 and p value of 0.13. The results warrant the need for constant monitoring programs for the prevention of aflatoxin contamination in local poultry farms.


Asunto(s)
Aflatoxinas/análisis , Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Animales , Pakistán , Aves de Corral
10.
BMC Genomics ; 23(1): 100, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123403

RESUMEN

BACKGROUND: Previous reports have shown that soil salinity is a growing threat to cowpea production, and thus the need for breeding salt-tolerant cowpea cultivars. A total of 234 Multi-Parent Advanced Generation Inter-Cross (MAGIC) lines along with their 8 founders were evaluated for salt tolerance under greenhouse conditions. The objectives of this study were to evaluate salt tolerance in a multi-parent advanced generation inter-cross (MAGIC) cowpea population, to identify single nucleotide polymorphism (SNP) markers associated with salt tolerance, and to assess the accuracy of genomic selection (GS) in predicting salt tolerance, and to explore possible epistatic interactions affecting salt tolerance in cowpea. Phenotyping was validated through the use of salt-tolerant and salt-susceptible controls that were previously reported. Genome-wide association study (GWAS) was conducted using a total of 32,047 filtered SNPs. The epistatic interaction analysis was conducted using the PLINK platform. RESULTS: Results indicated that: (1) large variation in traits evaluated for salt tolerance was identified among the MAGIC lines, (2) a total of 7, 2, 18, 18, 3, 2, 5, 1, and 23 were associated with number of dead plants, salt injury score, leaf SPAD chlorophyll under salt treatment, relative tolerance index for leaf SPAD chlorophyll, fresh leaf biomass under salt treatment, relative tolerance index for fresh leaf biomass, relative tolerance index for fresh stem biomass, relative tolerance index for the total above-ground fresh biomass, and relative tolerance index for plant height, respectively, with overlapping SNP markers between traits, (3) candidate genes encoding for proteins involved in ion transport such as Na+/Ca2+ K+ independent exchanger and H+/oligopeptide symporter were identified, and (4) epistatic interactions were identified. CONCLUSIONS: These results will have direct applications in breeding programs aiming at improving salt tolerance in cowpea through marker-assisted selection. To the best of our knowledge, this study was one of the earliest reports using a MAGIC population to investigate the genetic architecture of salt tolerance in cowpea.


Asunto(s)
Tolerancia a la Sal , Vigna , Estudio de Asociación del Genoma Completo , Humanos , Padres , Fenotipo , Polimorfismo de Nucleótido Simple , Tolerancia a la Sal/genética , Vigna/genética
11.
Front Plant Sci ; 12: 799318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095971

RESUMEN

In the past and present, human activities have been involved in triggering global warming, causing drought stresses that affect animals and plants. Plants are more defenseless against drought stress; and therefore, plant development and productive output are decreased. To decrease the effect of drought stress on plants, it is crucial to establish a plant feedback mechanism of resistance to drought. The drought reflex mechanisms include the physical stature physiology and biochemical, cellular, and molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-balance, comparative water contents and stomatal adjustment are considered as most prominent features against drought resistance in crop plants. In addition, the signal transduction pathway and reactive clearance of oxygen are crucial mechanisms for coping with drought stress via calcium and phytohormones such as abscisic acid, salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play a vital role in increasing resistance against drought stress in plants. The number of characteristic loci, transgenic methods and the application of exogenous substances [nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also equally important for enhancing the drought resistance of plants. In a nutshell, the current review will mainly focus on the role of phytohormones and related mechanisms involved in drought tolerance in various crop plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...