Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Graph Model ; 84: 125-133, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29960255

RESUMEN

Increasing resistance against available orthosteric beta-lactamase inhibitors necessitates the search for novel and powerful inhibitor molecules. In this respect, allosteric inhibitors serve as attractive alternatives. Here, we examine the structural basis of inhibition in a hidden, druggable pocket in TEM-1 beta-lactamase. Based on crystallographic evidence that 6-cyclohexyl-1-hexyl-ß-D-maltoside (CYMAL-6) binds to this site, first we determined the kinetic mechanism of inhibition by CYMAL-6. Activity measurements with CYMAL-6 showed that it competitively inhibits the wild type enzyme. Interestingly, it exhibits a steep dose-response curve with an IC50 of 100 µM. The IC50 value changes neither with different enzyme concentration nor with incubation of the enzyme with the inhibitor, showing that inhibition is not aggregation-based. The presence of the same concentrations of CYMAL-6 does not influence the activity of lactate dehydrogenase, further confirming the specificity of CYMAL-6 for TEM-1 beta-lactamase. Then, we identified compounds with high affinity to this allosteric site by virtual screening using Glide and Schrödinger Suite. Virtual screening performed with 500,000 drug like compounds from the ZINC database showed that top scoring compounds interact with the hydrophobic pocket that forms between H10 and H11 helices and with the catalytically important Arg244 residue through pi-cation interactions. Discovery of novel chemical scaffolds that target this allosteric site will pave the way for a new avenue in the design of new antimicrobials.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Sitio Alostérico/efectos de los fármacos , Sitios de Unión , Hidrólisis , Cinética , L-Lactato Deshidrogenasa/química , Unión Proteica , Inhibidores de beta-Lactamasas/farmacología
2.
Curr Genet ; 63(4): 709-722, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28013396

RESUMEN

Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 µg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.


Asunto(s)
Alcaloides/farmacología , Biopelículas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Alcaloides/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Metabolismo Energético/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos
3.
J Enzyme Inhib Med Chem ; 31(sup3): 33-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27353461

RESUMEN

Declining efficiency of antibiotic-inhibitor combinatorial therapies in treating beta-lactamase mediated resistance necessitates novel inhibitor development. Allosteric inhibition offers an alternative to conventional drugs that target the conserved active site. Here, we show that the evolutionarily conserved PWP triad located at the N-terminus of the H10 helix directly interacts with the allosteric site in TEM-1 beta-lactamase and regulates its activity. While point mutations in the PWP triad preserve the overall secondary structures around the allosteric site, they result in a more open and dynamic global structure with decreased chemical stability and increased aggregation propensity. These mutant enzymes with a less compact hydrophobic core around the allosteric site displayed significant activity loss. Detailed sequence and structure conservation analyses revealed that the PWP triad is an evolutionarily conserved motif unique to class A beta-lactamases aligning its allosteric site and hence is an effective potential target for enzyme regulation and selective drug design.


Asunto(s)
Sitio Alostérico , Secuencia Conservada , Evolución Molecular , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Sitio Alostérico/efectos de los fármacos , Secuencias de Aminoácidos , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Mutación Puntual , Urea/farmacología , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...