Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 41(8): 1220-1229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37707291

RESUMEN

Transforming growth factor ß1 (TGFß1) induces a cellular process known as epithelial-mesenchymal transition (EMT) associated with metabolic reprogramming, including enhanced glycolysis. Given the involvement of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB) enzymes in glycolysis, we aimed to investigate whether TGFß1 regulates expressions of PFKFB genes and if PFKFBs are required for TGFß1-driven phenotypes. A549 and MCF-10A cell lines were used as TGFß1-driven EMT models. Messenger RNA expressions of PFKFB and EMT genes were determined by real-time quantitative polymerase chain reaction. A small interfering RNA approach was used to deplete PFKFB4 expression. A Matrigel invasion assay was conducted to assess the effect of PFKFB4 silencing on the TGFß1-enhanced invasion of A549 cells. F2,6BP levels were analyzed using an enzyme-coupled assay. Glucose and lactate concentrations were determined using colorimetric assays. TGFß1 robustly induced expression of the fourth isoform of PFKFBs, PFKFB4, in both cell lines. PFKFB4 depletion partially inhibits mesenchymal transdifferentiation caused by TGFß1 in A549 cells, as assessed by microscopy. Inductions of Snail in MCF-10A cells and Fibronectin in A549 cells and repressions of E-cadherin in both cell lines by TGFß1 are attenuated by PFKFB4 silencing. PFKFB4 silencing reduces F2,6BP and glycolytic activity, although TGFß1 alone does not affect these parameters. Finally, PFKFB4 depletion suppresses the TGFß1-driven invasion of A549 cells through Matrigel. Presented data suggest that TGFß1 induces the expression of PFKFB4 in A549 and MCF-10 cells, and PFKFB4 may be required for TGFß1-driven phenotypes such as EMT and invasion in these models.


Asunto(s)
Fosfofructoquinasa-2 , Factor de Crecimiento Transformador beta1 , Humanos , Células A549 , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Fructosa , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
2.
Biochem Biophys Res Commun ; 606: 35-41, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35338857

RESUMEN

Transforming growth factor-beta (TGFß) proteins induce an epithelial-mesenchymal transition (EMT) programme that is associated with increased invasive and drug-resistant phenotype of carcinoma cells. In addition to the canonical pathway involving SMAD proteins, the mitogen-activated kinase (MAPK) pathway via extracellular signal-regulated kinases ½ (ERK1/2) is also involved in promoting and maintaining a mesenchymal phenotype by tumor cells following TGFß signal activation. As dual-specificity phosphatases (DUSPs) regulate ERK1/2 activity by dephosphorylation, we aimed to examine DUSPs' expression upon TGFß stimulation and whether DUSPs play a role in the EMT and related phenotypes promoted by TGFß1 in A549 cells. We found that TGFß1 stimulation led to marked changes in several DUSP proteins, including significant decreases in DUSP4 and DUSP13 expressions. We then showed that the ectopic co-expression of DUSP4/13 suppresses TGFß1-induced ERK1/2 phosphorylation and protein levels of the EMT transcription factors Snail and Slug proteins. We then demonstrated that DUSP4/13 co-expression partially inhibited TGFß1-promoted migration, invasion, and chemoresistance in A549 cells. Collectively, this report provides data for the involvement of DUSP4/13 in malignant phenotypes regulated by TGFß1 in A549 cells.


Asunto(s)
Movimiento Celular , Resistencia a Antineoplásicos , Fosfatasas de Especificidad Dual , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Células A549 , Línea Celular Tumoral , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Factor de Crecimiento Transformador beta1/farmacología
3.
Biochem Biophys Res Commun ; 571: 118-124, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34325126

RESUMEN

Activating mutations of the oncogenic KRAS in pancreatic ductal adenocarcinoma (PDAC) are associated with an aberrant metabolic phenotype that may be therapeutically exploited. Increased glutamine utilization via glutaminase-1 (GLS1) is one such feature of the activated KRAS signaling that is essential to cell survival and proliferation; however, metabolic plasticity of PDAC cells allow them to adapt to GLS1 inhibition via various mechanisms including activation of glycolysis, suggesting a requirement for combinatorial anti-metabolic approaches to combat PDAC. We investigated whether targeting the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) in combination with GLS1 can selectively prevent the growth of KRAS-transformed cells. We show that KRAS-transformation of pancreatic duct cells robustly sensitizes them to the dual targeting of GLS1 and PFKFB3. We also report that this sensitivity is preserved in the PDAC cell line PANC-1 which harbors an activating KRAS mutation. We then demonstrate that GLS1 inhibition reduced fructose-2,6-bisphosphate levels, the product of PFKFB3, whereas PFKFB3 inhibition increased glutamine consumption, and these effects were augmented by the co-inhibition of GLS1 and PFKFB3, suggesting a reciprocal regulation between PFKFB3 and GLS1. In conclusion, this study identifies a novel mutant KRAS-induced metabolic vulnerability that may be targeted via combinatorial inhibition of GLS1 and PFKFB3 to suppress PDAC cell growth.


Asunto(s)
Antineoplásicos/farmacología , Bencenoacetamidas/farmacología , Glutaminasa/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfofructoquinasa-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Tiadiazoles/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Mutación , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
Mol Cell Biochem ; 470(1-2): 115-129, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32415418

RESUMEN

Tumor cells increase glucose metabolism through glycolysis and pentose phosphate pathways to meet the bioenergetic and biosynthetic demands of rapid cell proliferation. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are key regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent activator of glycolysis. Previous studies have reported the co-expression of PFKFB isozymes, as well as the mRNA splice variants of particular PFKFB isozymes, suggesting non-redundant functions. Majority of the evidence demonstrating a requirement for PFKFB activity in increased glycolysis and oncogenic properties in tumor cells comes from studies on PFKFB3 and PFKFB4 isozymes. In this study, we show that the PFKFB2 isozyme is expressed in tumor cell lines of various origin, overexpressed and localizes to the nucleus in pancreatic adenocarcinoma, relative to normal pancreatic tissue. We then demonstrate the differential intracellular localization of two PFKFB2 mRNA splice variants and that, when ectopically expressed, cytoplasmically localized mRNA splice variant causes a greater increase in F2,6BP which coincides with an increased glucose uptake, as compared with the mRNA splice variant localizing to the nucleus. We then show that PFKFB2 expression is required for steady-state F2,6BP levels, glycolytic activity, and proliferation of pancreatic adenocarcinoma cells. In conclusion, this study may provide a rationale for detailed investigation of PFKFB2's requirement for the glycolytic and oncogenic phenotype of pancreatic adenocarcinoma cells.


Asunto(s)
Adenocarcinoma/enzimología , Glucólisis , Páncreas/enzimología , Neoplasias Pancreáticas/enzimología , Fosfofructoquinasa-2/fisiología , Adenocarcinoma/patología , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Citoplasma/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/fisiología , Neoplasias Pancreáticas/patología , Fenotipo , Fosfofructoquinasa-2/genética , Empalme del ARN , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA