Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IBRO Neurosci Rep ; 12: 309-322, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35746974

RESUMEN

Mood disorders can be considered among the most common and debilitating mental disorders. Major depression, as an example of mood disorders, is known to severely reduce the quality of life as well as psychosocial functioning of those affected. Its impact on the burden of disease worldwide has been enormous, with the World Health Organisation projecting depression to be the leading cause of mental illness by 2030. Despite several studies on the subject, little has been done to contextualise the condition in Africa, coupled with the fact that there is still much to be understood on the subject. This review attempts to shed more light on the prevalence of depression in Sub-Saharan Africa (SSA), its pathophysiology, risk factors, diagnosis and the experimental models available to study depression within the sub-region. It also evaluates the contribution of the sub-region to the global research output of depression as well as bottlenecks associated with full exploitation of the sub region's resources to manage the disorder.

2.
Clin Psychopharmacol Neurosci ; 19(2): 220-232, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33888651

RESUMEN

Methyl jasmonate (MJ) is a derivative of the jasmonate family which is found in most tropical regions of the world and present in many fruits and vegetables such as grapevines, tomato, rice, and sugarcane. MJ is a cyclopentanone phytohormone that plays a vital role in defense against stress and pathogens in plants. This has led to its isolation from plants for studies in animals. Many of these studies have been carried out to evaluate its therapeutic effects on behavioral and neurochemical functions. It has however been proposed to have beneficial potential over a wide range of neurological disorders. Hence, this review aims to provide an overview of the neuroprotective properties of MJ and its probable mechanisms of ameliorating neurological disorders. The information used for this review was sourced from research articles and scientific databases using 'methyl jasmonate', 'behavior', 'neuroprotection', 'neurodegenerative diseases', and 'mechanisms' as search words. The review highlights its influences on behavioral patterns of anxiety, aggression, depression, memory, psychotic, and stress. The molecular mechanisms such as modulation of the antioxidant defense, inflammatory biomarkers, neurotransmitter regulation, and neuronal regeneration, underlying its actions in managing neurodegenerative diseases like Alzheimer's and Parkinson's diseases are also discussed. This review, therefore, provides a detailed evaluation of methyl jasmonate as a potential neuroprotective compound with the ability to modify behavioral and molecular biomarkers underlying neurological disorders. Hence, MJ could be modeled as a guided treatment for the management of brain diseases.

4.
Drug Metab Pers Ther ; 35(4)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887181

RESUMEN

OBJECTIVES: Repeated exposure to anoxic stress damages the brain through cortisol-mediated increases in oxidative stress and cellular-antioxidants depletion. Thus, compounds with antioxidant property might confer protection against anoxic stress-induced brain injuries. In this study, we further examined the protective effect of methyl jasmonate (MJ), a potent anti-stress agent against anoxic stress-induced convulsions in mice. METHODS: Thirty-six male Swiss mice randomized into six groups (n=6) were given MJ (25, 50 and 100 mg/kg, i.p.) or vehicle (10 mL/kg, i.p.) 30 min before 15 min daily exposure to anoxic stress for 7 days. The latency(s) to anoxic convulsion was recorded on day 7. The blood glucose and serum corticosterone levels were measured afterwards. The brains were also processed for the determination of malondialdehyde, nitrite, and glutathione levels. RESULTS: Methyl jasmonate (MJ) delayed the latency to anoxic convulsion and reduced the blood glucose and serum corticosterone levels. The increased malondialdehyde and nitrite contents accompanied by decreased glutathione concentrations in mice with anoxic stress were significantly attenuated by MJ. CONCLUSIONS: These findings further showed that MJ possesses anti-stress property via mechanisms relating to the reduction of serum contents of corticosterone and normalization of brain biomarker levels of oxidative stress in mice with anoxic stress.


Asunto(s)
Corticosterona , Estrés Oxidativo , Acetatos , Animales , Antioxidantes/farmacología , Biomarcadores/metabolismo , Encéfalo , Corticosterona/farmacología , Ciclopentanos , Humanos , Masculino , Ratones , Oxilipinas , Convulsiones
5.
Neurochem Res ; 41(12): 3239-3249, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27590498

RESUMEN

This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), 'an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10-40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10-40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p < 0.05). Increased brain oxidative stress and nitric oxide levels in LPS-treated mice were significantly decreased by MJ. It offers protection against LPS-induced neuronal degeneration of the prefrontal cortex and CA1 of the hippocampus, suggesting neuroprotective effect. Taken together, these findings showed that MJ offers protection against LPS-induced memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Lipopolisacáridos/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oxilipinas/farmacología , Acetatos/uso terapéutico , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclopentanos/uso terapéutico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/psicología , Ratones , Fármacos Neuroprotectores/uso terapéutico , Nitritos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/uso terapéutico , Reconocimiento en Psicología/efectos de los fármacos
6.
Brain Res Bull ; 121: 105-14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26592471

RESUMEN

This study was undertaken to evaluate the adaptogenic-like activity of methyl jasmonate (MJ) in mice exposed to unpredictable chronic mild stress (UCMS). Male Swiss mice were treated with MJ (25-100mg/kg, i.p.) 30 min before exposure to UCMS daily for 14 days prior to testing for memory and anxiety. Thereafter, the blood glucose and serum corticosterone levels were estimated using glucometer and ELISA. The brain concentrations of malondialdehyde (MDA) and glutathione (GSH) were estimated using spectrophotometer. Brain histology and the population of healthy neurons in the hippocampal regions were also assessed. MJ reversed anxiety and memory impairment produced by UCMS, which suggest adaptogenic-like property. The reduction in the weight of adrenal gland and liver in MJ-treated groups further indicates adaptogenic activity. It further decreases the blood glucose and serum corticosterone levels in UCMS-mice. Also, MJ decreases the concentrations of MDA and elevated the levels of GSH in the brain of mice exposed to UCMS. Brain histology revealed that MJ attenuated UCMS-induced degeneration and death of neuronal cells in the pyramidal layer of the cornu ammonis 3 (CA3) and the sub-granular zone of the dentate gyrus of the hippocampus. Moreover, MJ decreased the population of dead neuronal cells of the pyramidal layer of the CA3 and the sub-granular zone of the dentate gyrus of the UCMS-mice, which suggests neuroprotection. Taken together, these findings suggest that MJ demonstrated adaptogenic-like activity in mice; which might be related to modulation of serum corticosterone levels, inhibition of oxidative stress and neuroprotection.


Asunto(s)
Acetatos/uso terapéutico , Ansiolíticos/uso terapéutico , Ciclopentanos/uso terapéutico , Oxilipinas/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Adaptación Ocular/efectos de los fármacos , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/patología , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad Crónica , Corticosterona/sangre , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Malondialdehído/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Psicológico/sangre , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...