Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 851: 88-98, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771349

RESUMEN

Pomolic acid (PA) isolated from Licania pittieri has hypotensive effects in rats, inhibits human platelet aggregation and elicits endothelium-dependent relaxation in rat aortic rings. The present study was designed to investigate the effects of PA on cardiomyocytes. Trabeculae and enzymatically isolated cardiomyocytes from rats were used to evaluate the concentration-dependent effects of PA on cardiac muscle tension and excitation-contraction coupling (ECC) by recording Ca2+ transients reported with Fluo-3 and Fura-2, as well as L-type Ca2+ currents (LTCC). PA reduced the contractile force in rat cardiac trabeculae with an EC50 = 14.3 ±â€¯2.4 µM. PA also reduced the amplitude of Ca2+ transients in a concentration-dependent manner, with an EC50 = 10.5 ±â€¯1.3 µM, without reducing sarcoplasmic reticulum (SR) Ca2+ loading. PA decreased the half width of the Ca2+ transient by 31.7 ±â€¯3.3% and increased the decay time and decay time constant (τ) by 7.6 ±â€¯2.7% and 75.6 ±â€¯3.7%, respectively, which was associated with increased phospholamban (PLN) phosphorylation. PA also reversibly reduced the macroscopic LTCC in the cardiomyocyte membrane, but did not demonstrate any effects on skeletal muscle ECC. In conclusion, PA reduces LTCC, Ca2+ transients and cardiomyocyte force, which along with its vasorelaxant effects explain its hypotensive properties. Increased PLN phosphorylation protected the SR from Ca2+ depletion. Considering the effects of PA on platelet aggregation and the cardiovascular system, we propose it as a new potential, multitarget cardiovascular agent with a demonstrated safety profile.


Asunto(s)
Acoplamiento Excitación-Contracción/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ácido Oleanólico/análogos & derivados , Animales , Canales de Calcio Tipo L/metabolismo , Masculino , Miocitos Cardíacos/citología , NG-Nitroarginina Metil Éster/farmacología , Ácido Oleanólico/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
2.
Cell Mol Biol Lett ; 23: 15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713353

RESUMEN

BACKGROUND: The leaves of Annona purpurea have yielded several alkaloids with anti-aggregation activities against rabbit platelets. This is promising in the search for agents that might act against platelets and reduce the incidence of cardiovascular diseases. Since significant differences in platelet function have been reported between human and animal platelets, a study focusing on the effect of A. purpurea extracts against human platelet activation is necessary. METHODS: The compounds in an A. purpurea ethanolic extract underwent bio-guided fractionation and were used for in vitro human platelet aggregation assays to isolate the compounds with anti-platelet activity. The bioactive compounds were identified by spectroscopic analysis. Additional platelet studies were performed to characterize their action as inhibitors of human platelet activation. RESULTS: The benzylisoquinoline alkaloid norpurpureine was identified as the major anti-platelet compound. The IC50 for norpurpureine was 80 µM against platelets when stimulated with adenosine 5'-diphosphate (ADP), collagen and thrombin. It was pharmacologically effective from 20 to 220 µM. Norpurpureine (220 µM) exhibited its in vitro effectiveness in samples from 30 healthy human donors who did not take any drugs during the 2 weeks prior to the collection. Norpurpureine also gradually inhibited granule secretion and adhesion of activated platelets to immobilized fibrinogen. At the intra-platelet level, norpurpureine prevented agonist-stimulated calcium mobilization and cAMP reduction. Structure-activity relationship analysis indicates that the lack of a methyl group at the nitrogen seems to be key in the ability of the compound to interact with its molecular target. CONCLUSION: Norpurpureine displays a promising in vitro pharmacological profile as an inhibitor of human platelet activation. Its molecular target could be a common effector between Ca2+ and cAMP signaling, such as the PLC-PKC-Ca2+ pathway and PDEs. This needs further evaluation at the protein isoform level.


Asunto(s)
Alcaloides/farmacología , Annona/química , Bencilisoquinolinas/farmacología , Plaquetas/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Adenosina Difosfato/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Bencilisoquinolinas/química , Bencilisoquinolinas/aislamiento & purificación , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Adhesividad Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Cultivo Primario de Células , Conejos
3.
Nat Prod Commun ; 10(2): 281-4, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25920261

RESUMEN

The Aspidosperma genus (Apocynaceae) represents one of the largest sources of indole alkaloids widely associated with cardiovascular effects. Aspidosperma fendleri, a plant found mainly in Venezuela, has a single phytochemical report in which is revealed the presence of alkaloids in its seeds. This study explored the cardiovascular effects of an ethanolic extract of A. fendleri leaves (EEAF) in spontaneously hypertensive rats (SHR) and its potential bioactive compounds. Using bioguided fractionation, fractions and pure compounds were intravenously administered to SHR and their effects on mean arterial blood pressure (MABP) and heart rate (HR) monitored over time. EEAF induced hypotensive and bradycardic effects as shown by significant reductions in mean arterial blood pressure (MABP) and heart rate (HR), respectively. Bioactivity-guided fractionation led to the isolation of a mixture of two known isomeric triterpenoid glycosides identified by spectral evidence as quinovic acid 3-O-ß-rhamnopyranoside and quinovic acid 3-O-ß-fucopyranoside. This mixture of triterpenoid saponins induced reductions in MABP and HR similar to those induced by propranolol. Together, these findings indicate that the two quinovic acid glycosides are responsible for the hypotensive and bradycardic effects which suggest their potential use in cardiovascular therapy.


Asunto(s)
Antihipertensivos/farmacología , Aspidosperma/química , Glicósidos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Animales , Glicósidos/química , Masculino , Estructura Molecular , Ratas , Ratas Endogámicas SHR
4.
Molecules ; 19(12): 21215-25, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25525822

RESUMEN

Three new lupane-type triterpenoids: 6ß,30-dihydroxybetulinic acid glucopyranosyl ester (4), 6ß,30-dihydroxybetulinic acid (5) and 6ß-hydroxybetulinic acid (6), were isolated from Licania cruegeriana Urb. along with six known compounds. Their structures were elucidated on the basis of spectroscopic methods, including IR, ESIMS, 1D- and 2D-NMR experiments, as well as by comparison of their spectral data with those of related compounds. All compounds were evaluated in vivo for their effects on the mean arterial blood pressure (MABP) and heart rate (HR) of spontaneously hypertensive rats (SHR) and also in vitro for their capacity to inhibit the human platelet aggregation. None of the isolated flavonoids 1-3 showed cardiovascular effects on SHR and among the isolated triterpenoids 4-9 only 5 and 6 produced a significant reduction in MABP (60.1% and 17.2%, respectively) and an elevation in HR (11.0% and 41.2%, respectively). Compounds 3, 4, 5 and 6 were able to inhibit human platelet aggregation induced by ADP, collagen and arachidonic acid with different selectivity profiles.


Asunto(s)
Antihipertensivos/farmacología , Chrysobalanaceae/química , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Animales , Antihipertensivos/aislamiento & purificación , Presión Arterial/efectos de los fármacos , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Humanos , Masculino , Extractos Vegetales/aislamiento & purificación , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Ratas Endogámicas SHR , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
5.
Phytomedicine ; 19(6): 484-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22402243

RESUMEN

Pomolic acid (PA), triterpenoid isolated from Licania pittieri, has previously shown a potent ability to inhibit adenosine diphosphate (ADP)- and epinephrine-induced human platelet aggregation. To investigate whether PA could be an antagonist of ADP-activated receptors of human platelets (P2Y(1) and P2Y(12)), pharmacological studies were conducted to examining its ability to modulate the platelet shape change induced by a selective P2Y(1) receptor agonist MRS2365 and also the nature of its possible interaction with ADP receptors by analyzing the characteristics of log concentration-response curves of ADP constructed in the absence and in the presence of fixed concentrations of PA, using in vitro platelet aggregation assays. PA did not interfere with the activation of P2Y(1) receptor by MRS2365 to induce platelet shape change and displayed a competitive antagonism of ADP-induced platelet aggregation, which most probably involves competition for a single binding site in platelets. The estimated equilibrium dissociate constant (K(b)) of PA as ADP receptor antagonist was 15.4±0.06nM. Together, these findings give indirect evidence for the idea that PA could be a potent competitive antagonist of P2Y(12) receptor, and open the possibility to consider it as new member of the non-nucleotide generation of antiplatelet drugs.


Asunto(s)
Adenosina Difosfato/antagonistas & inhibidores , Chrysobalanaceae/química , Ácido Oleanólico/análogos & derivados , Agregación Plaquetaria/efectos de los fármacos , Evaluación de Medicamentos , Epinefrina/antagonistas & inhibidores , Humanos , Técnicas In Vitro , Ácido Oleanólico/farmacología , Fitoterapia , Hojas de la Planta/química , Inhibidores de Agregación Plaquetaria/farmacología
6.
Phytomedicine ; 18(6): 464-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21112754

RESUMEN

Pomolic acid has recently shown hypotensive effect in rats. The purpose of this investigation was to determine the vascular effects of this triterpenoid and to examine its mode of action. Functional experiments in rat aortic rings precontracted with norepinephrine were performed to evaluate the vasorelaxant effect of pomolic acid. This triterpenoid induced a vasorelaxation (IC50 = 2.45 µM) in a concentration- and endothelium-dependent manner and showed no effect on contractions evoked by KCl (25 mM). Pre-treatment of aortic rings with L-NAME (100 µM), methylene blue (100 µM) or glibenclamide (10 µM), totally prevented the vasorelaxation induced by pomolic acid, while indomethacin (10 µM) had no effect on this response. Additionally, pomolic acid relaxation was unaffected under the muscarinic- and ß-adrenergic-receptor blocked ensured for atropine and propanolol respectively (10 µM each). In contrast, the vasorelaxant effect of pomolic acid was abolished under the purinergic-receptor blocked ensured for suramin (10 µM). Finally, apyrase (0.8 U/ml) an enzyme which hydrolyses ATP and ADP did not affect pomolic acid relaxation. In summary, pomolic acid has a potent endothelium-dependent vasorelaxant effect, possibly acting through the direct activation of endothelial purinergic receptors via NO-cGMP signaling pathway, which could be part of the mechanism underlying its hypotensive effect.


Asunto(s)
Chrysobalanaceae/química , Endotelio Vascular/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Extractos Vegetales/farmacología , Receptores Purinérgicos/metabolismo , Vasoconstricción/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Antihipertensivos/farmacología , Aorta , Apirasa/farmacología , Atropina/farmacología , Relación Dosis-Respuesta a Droga , Endotelio Vascular/fisiología , Hipertensión/metabolismo , Hipertensión/prevención & control , Indometacina/farmacología , Masculino , Norepinefrina , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Fitoterapia , Propranolol/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Mol Pharmacol ; 67(1): 114-22, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15496502

RESUMEN

Ectonucleoside triphosphate diphosphohydrolases (NTPDases) control the concentration of released extracellular nucleotides, but the precise physiological roles played by these isozymes in modulation of P2 receptor signaling remain unclear. Activation of the human P2Y(1) receptor was studied in the presence of NTPDase1 or NTPDase2 expressed either in the same cell as the receptor or in P2Y(1) receptor-expressing cells cocultured with NTPDaseexpressing cells. Coexpression of NTPDase1 with the P2Y(1) receptor resulted in increases in the EC(50) for 2'-methylthioadenosine 5'-diphosphate (2MeSADP; 12-fold), ADP (50-fold), and ATP (10-fold) for activation of phospholipase C. Similar effects were observed when the P2Y(1) receptor and NTPDase1 were expressed on different cells. These results are explained by the capacity of NTPDase1 to hydrolyze both nucleoside triphosphates and diphosphates. NTPDase2 preferentially hydrolyzes nucleoside triphosphates, and the presence of NTPDase2 under either coexpression or coculture conditions did not change the EC(50) of 2MeSADP, ADP, or adenosine 5'-O-(2-thiodiphosphate) for activation of the P2Y(1) receptor. However, the EC(50) for ATP was 15-fold lower in the presence of NTPDase2 than in cells expressing the P2Y(1) receptor alone. Whereas expression of NTPDase1 decreased basal activity of the P2Y(1) receptor, the presence of the NTPDase2 resulted in P2Y(1) receptor-dependent increases in basal activity. These results suggest that basal activity of the P2Y(1) receptor is maintained by paracrine or autocrine release of receptor agonists and that the biological and/or pharmacological response mediated by P2Y receptors in target tissues is highly dependent on the types of ectonucleotidases expressed in the vicinity of the receptor.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Apirasa/metabolismo , Receptores Purinérgicos P2/fisiología , Transducción de Señal/fisiología , Adenosina Trifosfatasas/genética , Animales , Antígenos CD , Apirasa/genética , Astrocitoma , Línea Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Isoenzimas/metabolismo , Cinética , Ratones , Ensayo de Unión Radioligante , Receptores Purinérgicos P2Y1 , Especificidad por Sustrato , Fosfolipasas de Tipo C/metabolismo
8.
Mol Pharmacol ; 62(3): 521-8, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12181428

RESUMEN

To begin to address the functional interactions between constitutively released nucleotides, ectonucleotidase activity, and P2Y receptor-promoted signaling responses, we engineered the human P2Y(1) receptor in a fusion protein with a member of the ectonucleoside triphosphate diphosphohydrolase family, NTPDase1. Membranes prepared from Chinese hamster ovary (CHO)-K1 cells stably expressing either wild-type NTPDase1 or the P2Y(1) receptor-NTPDase1 fusion protein exhibited nucleotide-hydrolytic activities that were over 300-fold greater than activity measured in membranes from empty vector-transfected cells. The molecular ratio for nucleoside triphosphate versus diphosphate hydrolysis was approximately 1:0.4 for both the wild-type NTPDase1 and P2Y(1)-NTPDase1 fusion protein. Stable expression of the P2Y(1)-NTPDase1 fusion protein conferred an ADP and 2MeSADP-promoted Ca(2+) response to CHO-K1 cells. Moreover, the maximal capacity of the nonhydrolyzable agonist ADPbetaS to stimulate inositol phosphate accumulation was similar, and the EC(50) of ADPbetaS was lower in the fusion protein than the wild-type receptor. In contrast, the substantial nucleotide-hydrolyzing activity of the fusion protein resulted in a greater than 50-fold shift to the right of the concentration-effect curve of ADP for activation of phospholipase C compared with the wild-type receptor. Heterologous expression of the P2Y(1) and other P2Y receptors results in marked increases in basal inositol phosphate levels. Given the high nucleotidase activity and apparently normal receptor signaling activity of the P2Y(1) receptor-NTPDase1 fusion protein, we quantitated basal inositol phosphate accumulation in cells stably expressing either the wild-type P2Y(1) receptor or the fusion protein. Although marked elevation of inositol phosphate levels occurred with wild-type P2Y(1) receptor expression, levels in cells expressing the fusion protein were not different from those in wild-type CHO-K1 cells.


Asunto(s)
Apirasa/metabolismo , Nucleótidos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Antígenos CD , Apirasa/genética , Células CHO , Cricetinae , Humanos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1 , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...