Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 33(1): 1209-1225, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169110

RESUMEN

Statins, which reduce LDL-cholesterol by inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are among the most widely prescribed drugs. Skeletal myopathy is a known statin-induced adverse effect associated with mitochondrial changes. We hypothesized that similar effects would occur in cardiac myocytes in a lipophilicity-dependent manner between 2 common statins: atorvastatin (lipophilic) and pravastatin (hydrophilic). Neonatal cardiac ventricular myocytes were treated with atorvastatin and pravastatin for 48 h. Both statins induced endoplasmic reticular (ER) stress, but only atorvastatin inhibited ERK1/2T202/Y204, AktSer473, and mammalian target of rapamycin signaling; reduced protein abundance of caveolin-1, dystrophin, epidermal growth factor receptor, and insulin receptor-ß; decreased Ras homolog gene family member A activation; and induced apoptosis. In cardiomyocyte-equivalent HL-1 cells, atorvastatin, but not pravastatin, reduced mitochondrial oxygen consumption. When male mice underwent atorvastatin and pravastatin administration per os for up to 7 mo, only long-term atorvastatin, but not pravastatin, induced elevated serum creatine kinase; swollen, misaligned, size-variable, and disconnected cardiac mitochondria; alteration of ER structure; repression of mitochondria- and endoplasmic reticulum-related genes; and a 21% increase in mortality in cardiac-specific vinculin-knockout mice during the first 2 months of administration. To our knowledge, we are the first to demonstrate in vivo that long-term atorvastatin administration alters cardiac ultrastructure, a finding with important clinical implications.-Godoy, J. C., Niesman, I. R., Busija, A. R., Kassan, A., Schilling, J. M., Schwarz, A., Alvarez, E. A., Dalton, N. D., Drummond, J. C., Roth, D. M., Kararigas, G., Patel, H. H., Zemljic-Harpf, A. E. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes.


Asunto(s)
Atorvastatina/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Pravastatina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Supervivencia Celular , LDL-Colesterol/sangre , Creatina Quinasa/sangre , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Transcriptoma , Vinculina/genética , Proteína de Unión al GTP rhoA/metabolismo
2.
Nat Commun ; 7: 12120, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27353086

RESUMEN

MLP (muscle LIM protein)-deficient mice count among the first mouse models for dilated cardiomyopathy (DCM), yet the exact role of MLP in cardiac signalling processes is still enigmatic. Elevated PKCα signalling activity is known to be an important contributor to heart failure. Here we show that MLP directly inhibits the activity of PKCα. In end-stage DCM, PKCα is concentrated at the intercalated disc of cardiomyocytes, where it is sequestered by the adaptor protein CARP in a multiprotein complex together with PLCß1. In mice deficient for both MLP and CARP the chronic PKCα signalling chain at the intercalated disc is broken and they remain healthy. Our results suggest that the main role of MLP in heart lies in the direct inhibition of PKCα and that chronic uninhibited PKCα activity at the intercalated disc in the absence of functional MLP leads to heart failure.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Represoras/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Escherichia coli , Regulación de la Expresión Génica , Insuficiencia Cardíaca/etiología , Humanos , Proteínas con Dominio LIM/genética , Masculino , Ratones , Proteínas Musculares/genética , Proteínas Nucleares/genética , Proteína Quinasa C-alfa/genética , Proteínas Represoras/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...