Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473317

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.

2.
Methods Mol Biol ; 2621: 41-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37041439

RESUMEN

The emergence of circulating DNA analysis in blood during the past decade has responded to the need for noninvasive alternatives to classical tissue biopsies. This has coincided with the development of techniques that allow the detection of low-frequency allele variants in clinical samples that typically carry very low amounts of fragmented DNA, such as plasma or FFPE samples. Enrichment of rare variants by nuclease-assisted mutant allele enrichment with overlapping probes (NaME-PrO) enables a more sensitive detection of mutations in tissue biopsy samples alongside standard qPCR detection assays. Such sensitivity is normally achieved by other more complex PCR methods, such as TaqMan qPCR and digital droplet PCR (ddPCR). Here we describe a workflow of mutation-specific nuclease-based enrichment combined with a SYBR Green real-time quantitative PCR detection method that provides comparable results to ddPCR. Using a PIK3CA mutation as an example, this combined workflow enables detection and accurate prediction of initial variant allele fraction in samples with a low mutant allele frequency (<1%) and could be applied flexibly to detect other mutations of interest.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN/genética , Ácidos Nucleicos Libres de Células/genética , Endonucleasas , Biopsia
3.
Biomedicines ; 10(5)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35625825

RESUMEN

Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.

5.
Sci Rep ; 10(1): 17082, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051521

RESUMEN

PIK3CA is one of the two most frequently mutated genes in breast cancers, occurring in 30-40% of cases. Four frequent 'hotspot' PIK3CA mutations (E542K, E545K, H1047R and H1047L) account for 80-90% of all PIK3CA mutations in human malignancies and represent predictive biomarkers. Here we describe a PIK3CA mutation specific nuclease-based enrichment assay, which combined with a low-cost real-time qPCR detection method, enhances assay detection sensitivity from 5% for E542K and 10% for E545K to 0.6%, and from 5% for H1047R to 0.3%. Moreover, we present a novel flexible prediction method to calculate initial mutant allele frequency in tissue biopsy and blood samples with low mutant fraction. These advancements demonstrated a quick, accurate and simple detection and quantitation of PIK3CA mutations in two breast cancer cohorts (first cohort n = 22, second cohort n = 25). Hence this simple, versatile and informative workflow could be applicable for routine diagnostic testing where quantitative results are essential, e.g. disease monitoring subject to validation in a substantial future study.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/sangre , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Femenino , Frecuencia de los Genes , Humanos , Células MCF-7 , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
6.
Semin Cancer Biol ; 59: 66-79, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30738865

RESUMEN

PTEN is a phosphatase which metabolises PIP3, the lipid product of PI 3-Kinase, directly opposing the activation of the oncogenic PI3K/AKT/mTOR signalling network. Accordingly, loss of function of the PTEN tumour suppressor is one of the most common events observed in many types of cancer. Although the mechanisms by which PTEN function is disrupted are diverse, the most frequently observed events are deletion of a single gene copy of PTEN and gene silencing, usually observed in tumours with little or no PTEN protein detectable by immunohistochemistry. Accordingly, with the exceptions of glioblastoma and endometrial cancer, mutations of the PTEN coding sequence are uncommon (<10%) in most types of cancer. Here we review the data relating to PTEN loss in seven common tumour types and discuss mechanisms of PTEN regulation, some of which appear to contribute to reduced PTEN protein levels in cancers.


Asunto(s)
Susceptibilidad a Enfermedades , Mutación con Pérdida de Función , Neoplasias/etiología , Neoplasias/metabolismo , Fosfohidrolasa PTEN/genética , Animales , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Mutación , Neoplasias/patología , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal
7.
Sci Rep ; 8(1): 4290, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523855

RESUMEN

PIK3CA mutations are seemingly the most common driver mutations in breast cancer with H1047R and E545K being the most common of these, accounting together for around 60% of all PIK3CA mutations and have promising therapeutic implications. Given the low sensitivity and the high cost of current genotyping methods we sought to develop fast, simple and inexpensive assays for PIK3CA H1047R and E545K mutation screening in clinical material. The methods we describe are based on a real-time PCR including a mutation specific primer combined with a non-productive oligonucleotide which inhibits wild-type amplification and a parallel internal control reaction. We demonstrate consistent detection of PIK3CA H1047R mutant DNA in genomic DNA extracted from frozen breast cancer biopsies, FFPE material or cancer cell lines with a detection sensitivity of approximately 5% mutant allele fraction and validate these results using both Sanger sequencing and deep next generation sequencing methods. The detection sensitivity for PIK3CA E545K mutation was approximately 10%. We propose these methods as simple, fast and inexpensive diagnostic tools to determine PIK3CA mutation status.


Asunto(s)
Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Pruebas Genéticas/métodos , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Neoplasias de la Mama/diagnóstico , Línea Celular , Femenino , Células HCT116 , Humanos , Células MCF-7
8.
Oncol Lett ; 13(4): 2003-2014, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28454355

RESUMEN

Melatonin, synthesized in and released from the pineal gland, has been demonstrated by multiple in vivo and in vitro studies to have an oncostatic role in hormone-dependent tumors. Furthermore, several clinical trials point to melatonin as a promising adjuvant molecule to be considered for cancer treatment. In the past few years, evidence of a broader spectrum of action of melatonin as an antitumor agent has arisen; thus, melatonin appears to also have therapeutic effects in several types of hormone-independent cancer, including ovarian, leukemic, pancreatic, gastric and non-small cell lung carcinoma. In the present study, the latest findings regarding melatonin molecular actions when concomitantly administered with either radiotherapy or chemotherapy in cancer were reviewed, with a particular focus on hormone-dependent breast cancer. Finally, the present study discusses which direction should be followed in the next years to definitely clarify whether or not melatonin administration could protect against non-desirable effects (such as altered gene expression and post-translational protein modifications) caused by chemotherapy or radiotherapy treatments. As treatments move towards personalized medicine, comparative gene expression profiling with and without melatonin may be a powerful tool to better understand the antitumor effects of melatonin, the pineal gland hormone.

9.
Biochem Soc Trans ; 44(1): 273-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26862215

RESUMEN

The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation.


Asunto(s)
Células/enzimología , Fosfohidrolasa PTEN/metabolismo , Procesamiento Proteico-Postraduccional , Humanos , Transporte de Proteínas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina/metabolismo
10.
Oncotarget ; 6(17): 15077-94, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-25987130

RESUMEN

The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6G-F4/80-/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1ß expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1ß expression showed shorter survival compared to patients with low IL1ß. IL1ß promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1ß activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1ß signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Microglía/metabolismo , Monocitos/metabolismo , Receptores de Quimiocina/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Receptor 1 de Quimiocinas CX3C , Línea Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Immunoblotting , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Noqueados , Ratones Transgénicos , Microglía/patología , Microscopía Confocal , Monocitos/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia , Células Tumorales Cultivadas , Microambiente Tumoral/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Oncol Lett ; 8(2): 487-492, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25009641

RESUMEN

Melatonin, the main secretory product of the pineal gland, is an oncostatic agent that reduces the growth and development of various types of tumors, particularly mammary tumors whose growth is dependent on estrogens. Previous in vivo and in vitro studies point to the hypothesis that melatonin interplays with estrogen signaling pathways at three different levels: i) an indirect mechanism, by interfering with the hypothalamic-pituitary-reproductive axis in such way that the level of plasma estrogens synthesized by the gonadal glands are downregulated; ii) a direct mechanism of the pineal gland at the cell cancer level, disrupting the activation of estradiol receptors, therefore behaving as a selective estrogen receptor modulator; and iii) by regulating the enzymes involved in the biosynthesis of estrogens in other tissues, thus behaving as a selective estrogen enzyme modulator. The intratumoral metabolism and synthesis of estrogens, as a result of the interactions of various enzymes, is more important than blood uptake to maintain mammary gland estrogen levels in menopausal females. Additionally, estrogens are considered to play an important role in the pathogenesis and development of hormone-dependent breast carcinoma. Paracrine interactions among malignant epithelial cells and proximal adipose and endothelial cells, through cytokines and growth factors produced by breast tumor cells, modulate estrogen production at the mammary tumor level and, as a consequence, the genesis and development of mammary tumors. The aim of the present review is to summarize the recent findings describing the mechanisms by which melatonin is able to modulate the crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer.

12.
Oncol Rep ; 29(5): 2058-64, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23450505

RESUMEN

Melatonin is known to suppress the development of endocrine-responsive breast cancers by interacting with the estrogen signaling pathways. Paracrine interactions between malignant epithelial cells and proximal stromal cells are responsible for local estrogen biosynthesis. In human breast cancer cells and peritumoral adipose tissue, melatonin downregulates aromatase, which transforms androgens into estrogens. The presence of aromatase on endothelial cells indicates that endothelial cells may contribute to tumor growth by producing estrogens. Since human umbilical vein endothelial cells (HUVECs) express both aromatase and melatonin receptors, the aim of the present study was to evaluate the ability of melatonin to regulate the activity and expression of aromatase on endothelial cells, thus, modulating local estrogen biosynthesis. In the present study, we demonstrated that melatonin inhibits the growth of HUVECs and reduces the local biosynthesis of estrogens through the downregulation of aromatase. These results are supported by three lines of evidence. Firstly, 1 mM of melatonin counteracted the testosterone-induced cell proliferation of HUVECs, which is dependent on the local biosynthesis of estrogens from testosterone by the aromatase activity of the cells. Secondly, we found that 1 mM of melatonin reduced the aromatase activity of HUVECs. Finally, by real­time RT-PCR, we demonstrated that melatonin significantly downregulated the expression of aromatase as well as its endothelial-specific aromatase promoter region I.7. We conclude that melatonin inhibits aromatase activity and expression in HUVECs by regulating gene expression of specific aromatase promoter regions, thereby reducing the local production of estrogens.


Asunto(s)
Aromatasa/metabolismo , Células Endoteliales/efectos de los fármacos , Melatonina/farmacología , Aromatasa/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Estrógenos/biosíntesis , Estrógenos/genética , Estrógenos/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Regiones Promotoras Genéticas/efectos de los fármacos , Testosterona/farmacología
13.
Microvasc Res ; 87: 25-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23473980

RESUMEN

Endothelial cells represent one of the critical cellular elements in tumor microenvironment playing a crucial role in the growth and progression of cancer through controlling angiogenesis. Vascular endothelial growth factor (VEGF) produced from tumor cells is essential for the expansion of breast cancer and may function in both paracrine and autocrine manners to promote proliferation, growth, survival and migration of endothelial cells. Since melatonin regulates tumor microenvironment by decreasing the secretion of VEGF by malignant epithelial cells and also regulates VEGF expression in human breast cancer cells, the aim of the present study was to investigate the anti-angiogenic activity of melatonin against the pro-angiogenic effects of breast cancer cells. In this work, we demonstrate that melatonin strongly inhibited the proliferation as well as invasion/migration of human umbilical vein endothelial cells (HUVECs). Melatonin disrupted tube formation and counteracted the VEGF-stimulated tubular network formation by HUVEC. In addition, conditioned media collected from human breast cancer cells were angiogenically active and stimulated tubule length formation and this effect was significantly counteracted by the addition of anti-VEGF or melatonin. Melatonin also disintegrated preformed capillary network. All these findings demonstrate that melatonin may play a role in the paracrine interactions that take place between malignant epithelial cells and proximal endothelial cells. Melatonin could be important in reducing endothelial cell proliferation, invasion, migration and tube formation, through a downregulatory action on VEGF. Taken together, our findings suggest that melatonin could potentially be beneficial as an antiangiogenic agent in breast cancer with possible future clinical applications.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Melatonina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Comunicación Paracrina , Factores de Tiempo
14.
J Pineal Res ; 54(4): 373-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23013414

RESUMEN

Melatonin exerts oncostatic effects on breast cancer by interfering with the estrogen-signaling pathways. Melatonin reduces estrogen biosynthesis in human breast cancer cells, surrounding fibroblasts and peritumoral endothelial cells by regulating cytokines that influence tumor microenvironment. This hormone also exerts antiangiogenic activity in tumoral tissue. In this work, our objective was to study the role of melatonin on the regulation of the vascular endothelial growth factor (VEGF) in breast cancer cells. To accomplish this, we cocultured human breast cancer cells (MCF-7) with human umbilical vein endothelial cells (HUVECs). VEGF added to the cultures stimulated the proliferation of HUVECs and melatonin (1 mM) counteracted this effect. Melatonin reduced VEGF production and VEGF mRNA expression in MCF-7 cells. MCF-7 cells cocultured with HUVECs stimulated the endothelial cells proliferation and increased VEGF levels in the culture media. Melatonin counteracted both stimulatory effects on HUVECs proliferation and on VEGF protein levels in the coculture media. Conditioned media from MCF-7 cells increased HUVECs proliferation, and this effect was significantly counteracted by anti-VEGF and 1 mM melatonin. All these findings suggest that melatonin may play a role in the paracrine interactions between malignant epithelial cells and proximal endothelial cells through a downregulatory action on VEGF expression in human breast cancer cells, which decrease the levels of VEGF around endothelial cells. Lower levels of VEGF could be important in reducing the number of estrogen-producing cells proximal to malignant cells as well as decreasing tumoral angiogenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Melatonina/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Bases , Neoplasias de la Mama/patología , Línea Celular Tumoral , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Cartilla de ADN , Femenino , Humanos , Células MCF-7 , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular/genética
15.
J Pineal Res ; 52(1): 12-20, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21718362

RESUMEN

Melatonin inhibits the genesis and growth of breast cancer by interfering at different levels in the estrogen-signaling pathways. Melatonin inhibits aromatase activity and expression in human breast cancer cells, thus behaving as a selective estrogen enzyme modulator. As the adipose tissue adjacent to the tumor seems to account for most aromatase expression and enzyme activity in breast tumors and also mediates the desmoplastic reaction or accumulation of undifferentiated fibroblasts around malignant epithelial cells, in this work, we studied the effects of melatonin on the conversion of preadipocytes (3T3-L1) into adipocytes and on the capability of these cells to synthesize estrogens by regulating the expression and enzyme activity of aromatase, one of the main enzymes that participates in the synthesis of estrogens in the peritumoral adipose tissue. Thus, in both differentiating and differentiated 3T3-L1 adipocytes, high concentrations of melatonin increased intracytoplasmic triglyceride accumulation, an indicator of adipogenic differentiation. Melatonin (1 mm) significantly increased the expression of both CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ, two main regulators of terminal adipogenesis, in 3T3-L1 cells. The presence of melatonin during differentiation also induced a parallel reduction in aromatase expression and activity and expression of the cells. The effects of melatonin were reversed by luzindole, a melatonin receptor antagonist, indicating that melatonin acts through known receptor-mediated mechanisms. These findings suggest that, in human breast tumors, melatonin could stimulate the differentiation of fibroblasts and reduce the aromatase activity and expression in both fibroblasts and adipocytes, thereby reducing the number of estrogen-producing cells proximal to malignant cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Melatonina/farmacología , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Análisis de Varianza , Animales , Aromatasa/genética , Aromatasa/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Fibroblastos/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Triptaminas/farmacología
16.
J Pineal Res ; 52(3): 282-90, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22151118

RESUMEN

Melatonin exerts oncostatic effects on breast cancer by interfering with the estrogen signaling pathways. Melatonin inhibits aromatase enzyme in breast cancer cells and fibroblasts. In addition, melatonin stimulates the adipogenic differentiation of fibroblasts. Our objective was to study whether melatonin interferes in the desmoplastic reaction by regulating some factors secreted by malignant cells, tumor necrosis factor (TNF)-α, interleukin (IL)-11, and interleukin (IL)-6. To accomplish this, we co-cultured 3T3-L1 cells with MCF-7 cells. The addition of breast cancer cells to the co-cultures inhibited the differentiation of 3T3-L1 preadipocytes to mature adipocytes, by reducing the intracytoplasmic triglyceride accumulation, an indicator of adipogenic differentiation, and also stimulated their aromatase activity. Melatonin counteracted the inhibitory effect on adipocyte differentiation and aromatase activity induced by MCF-7 cells in 3T3-L1 cells. The levels of cytokines in the co-culture media were 10 times those found in culture of 3T3-L1 cells alone. Melatonin decreased the concentrations of cytokines in the media and counteracted the stimulatory effect induced by MCF-7 cells on the cytokine levels. One millimolar melatonin induced a reduction in TNF-α, IL-6, and IL-11 mRNA expression in MCF-7 and 3T3-L1 cells. The findings suggest that melatonin may play a role in the desmoplastic reaction in breast cancer through a downregulatory action on the expression of antiadipogenic cytokines, which decrease the levels of these cytokines. Lower levels of cytokines stimulate the differentiation of fibroblasts and decrease both aromatase activity and expression, thereby reducing the number of estrogen-producing cells proximal to malignant cells.


Asunto(s)
Neoplasias de la Mama/patología , Citocinas/biosíntesis , Melatonina/fisiología , Células 3T3-L1 , Animales , Aromatasa/metabolismo , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Cartilla de ADN , Femenino , Humanos , Ratones
17.
Curr Cancer Drug Targets ; 10(3): 279-86, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20370689

RESUMEN

Melatonin inhibits the growth of different kinds of neoplasias, especially breast cancer, by interacting with estrogen-responsive pathways, thus behaving as an antiestrogenic hormone. Recently, we described that melatonin reduces sulfatase expression and activity in MCF-7 human breast cancer cells, thus modulating the local estrogen biosynthesis. In this study, to investigate the in vivo sulfatase-inhibitory properties of melatonin, this indoleamine was administered to ovariectomized rats bearing DMBA-induced mammary tumors, and treated with estrone sulfate. In castrated animals, the growth of estrogen-sensitive mammary tumors depends on the local conversion of biologically inactive estrogens to bioactive unconjugated estrogens. Ovariectomy significantly reduced the size and the number of the tumors while the administration of estrone sulfate to ovariectomized animals stimulated tumor growth, an effect which was suppressed by melatonin. The uterine weight of ovariectomized rats, which depends on the local synthesis of estrogens, was increased by estrone sulfate, except in those animals which were also treated with melatonin. The growth-stimulatory effects of estrone sulfate on the uterus and tumors depend exclusively on locally formed estrogens, since no changes in serum estradiol were appreciated in estrone sulfate-treated rats. Melatonin counteracted the stimulatory effects of estrone sulfate on sulfatase activity and expression and incubation with melatonin decreased the sulfatase activity of tumors from control animals. Animals treated with melatonin had the same survival probability as the castrated animals and significantly higher than the uncastrated. We conclude that melatonin could exert its antitumoral effects on hormone-dependent mammary tumors by down-regulating the sulfatase pathway of the tumoral tissue.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Melatonina/farmacología , Sulfatasas/antagonistas & inhibidores , 9,10-Dimetil-1,2-benzantraceno , Animales , Relación Dosis-Respuesta a Droga , Estrona/análogos & derivados , Estrona/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ovariectomía , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sulfatasas/genética , Sulfatasas/metabolismo , Factores de Tiempo , Carga Tumoral , Útero/efectos de los fármacos , Útero/patología
18.
Oncol Rep ; 23(4): 1173-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20204307

RESUMEN

Melatonin interacts with estradiol at the estrogen receptor level in different kinds of neoplasias and also regulates the expression and the activity of some enzymes involved in the biosynthesis of estrogens in peripheral tissues. Glioma cells express estrogen receptors and have the ability to synthesize estrogens locally. Since melatonin inhibits the growth of C6 cells, and this indoleamine has been demonstrated to be capable of decreasing aromatase expression and activity in these cells, the aim of the present study was to analyze whether the regulation of the sulfatase, the enzyme that catalyzes the rate-limiting step in the conversion of estrogen sulfates to estrogens, and 17beta-hydroxysteroid dehydrogenase, the enzyme which converts the relatively inactive estrone to the most potent 17beta-estradiol, could be involved in the inhibition of glioma cell growth by melatonin. We found that melatonin decreases the growth of C6 glioma cells and reduces the sulfatase and 17beta-hydroxysteroid dehydrogenase activity. Finally, we demonstrated that melatonin downregulates sulfatase and 17beta-hydroxysteroid dehydrogenase mRNA steady state levels in these glioma cells. By analogy to the implications of these enzymes in other forms of estrogen-sensitive tumors, it is conceivable that their modulation by melatonin may play a role in the growth of glioblastomas.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/efectos de los fármacos , Antioxidantes/farmacología , Glioma/enzimología , Melatonina/farmacología , Sulfatasas/efectos de los fármacos , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Línea Celular Tumoral , ARN Mensajero/análisis , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...