Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109402, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510115

RESUMEN

Serratia marcescens is an opportunistic pathogen that survives in inhospitable environments causing large outbreaks, particularly in neonatal intensive care units (NICUs). Genomic studies revealed that most S. marcescens nosocomial infections are caused by a specific clone (here "Infectious clone"). Whole genome sequencing (WGS) is the only portable method able to identify this clone, but it requires days to obtain results. We present a cultivation-free hypervariable-locus melting typing (HLMT) protocol for the fast detection and typing of S. marcescens, with 100% detection capability on mixed samples and a limit of detection that can reach the 10 genome copies. The protocol was able to identify the S. marcescens infectious clone with 97% specificity and 96% sensitivity when compared to WGS, yielding typing results portable among laboratories. The protocol is a cost and time saving method for S. marcescens detection and typing for large environmental/clinical surveillance screenings, also in low-middle income countries.

2.
Acta Parasitol ; 69(1): 1053-1057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396225

RESUMEN

PURPOSE: Myiases are infestations of human and animal tissues by fly larvae. These conditions are widespread in tropical countries and travelers in those areas are at risk of becoming infested. Although Cordylobia anthropophaga (Blanchard & Berenger-Feraud, 1872) is one of the most common myiasis-causing species, few high-quality images and molecular sequences are available for this fly. We present a case of C. anthropophaga infestation in an Italian patient returning from Senegal, with the aim of increasing both visual and molecular data for this species. METHODS: After removal, the larva was determined following standardized morphological keys and photographed under a digital microscope. Molecular characterization of the Cytochrome c oxidase subunit I (COI) was performed using universal primers. RESULTS: The general appearance, the structural organization of the cephalic region, of the cephaloskeleton, and of the posterior tracheal spiracles suggested that the causative agent of the myiasis was a third instar larva of C. anthropophaga. The morphological data are further supported by the molecular data: the COI sequence showed high levels of identity with the already published verified COI sequences of C. anthropophaga. CONCLUSION: We provide high-quality morphological and molecular data useful for the identification of larvae of C. anthropophaga. We highlight that myiasis might be common in Senegal and better data about its prevalence in travelers and in the endemic countries are needed to understand the burden of this condition.


Asunto(s)
Calliphoridae , Larva , Miasis , Viaje , Animales , Miasis/parasitología , Senegal , Italia , Humanos , Complejo IV de Transporte de Electrones/genética , Masculino , Dípteros/clasificación , Dípteros/genética
3.
Parasit Vectors ; 16(1): 35, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703216

RESUMEN

Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.


Asunto(s)
Leishmania , Leishmaniasis , Parásitos , Vacunas , Virosis , Animales , Perros , Humanos , Leishmaniasis/prevención & control , Leishmaniasis/parasitología , Células Dendríticas , Mamíferos
4.
Front Microbiol ; 13: 957901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188005

RESUMEN

DNA methylation is an important mechanism involved in bacteria limiting foreign DNA acquisition, maintenance of mobile genetic elements, DNA mismatch repair, and gene expression. Changes in DNA methylation pattern are observed in bacteria under stress conditions, including exposure to antimicrobial compounds. These changes can result in transient and fast-appearing adaptive antibiotic resistance (AdR) phenotypes, e.g., strain overexpressing efflux pumps. DNA methylation can be related to DNA mutation rate, because it is involved in DNA mismatch repair systems and because methylated bases are well-known mutational hotspots. The AdR process can be the first important step in the selection of antibiotic-resistant strains, allowing the survival of the bacterial population until more efficient resistant mutants emerge. Epigenetic modifications can be investigated by third-generation sequencing platforms that allow us to simultaneously detect all the methylated bases along with the DNA sequencing. In this scenario, this sequencing technology enables the study of epigenetic modifications in link with antibiotic resistance and will help to investigate the relationship between methylation and mutation in the development of stable mechanisms of resistance.

5.
Microbiol Spectr ; 10(4): e0100922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913212

RESUMEN

Pathogen typing is pivotal to detecting the emergence of high-risk clones in hospital settings and to limit their spread. Unfortunately, the most commonly used typing methods (i.e., pulsed-field gel electrophoresis [PFGE], multilocus sequence typing [MLST], and whole-genome sequencing [WGS]) are expensive or time-consuming, limiting their application to real-time surveillance. High-resolution melting (HRM) can be applied to perform cost-effective and fast pathogen typing, but developing highly discriminatory protocols is challenging. Here, we present hypervariable-locus melting typing (HLMT), a novel approach to HRM-based typing that enables the development of more effective and portable typing protocols. HLMT types the strains by assigning them to melting types (MTs) on the basis of a reference data set (HLMT-assignment) and/or by clustering them using melting temperatures (HLMT-clustering). We applied the HLMT protocol developed on the capsular gene wzi for Klebsiella pneumoniae on 134 strains collected during surveillance programs in four hospitals. Then, we compared the HLMT results to those obtained using wzi, MLST, WGS, and PFGE typing. HLMT distinguished most of the K. pneumoniae high-risk clones with a sensitivity comparable to that of PFGE and MLST+wzi. It also drew surveillance epidemiological curves comparable to those obtained using MLST+wzi, PFGE, and WGS typing. Furthermore, the results obtained using HLMT-assignment were consistent with those of wzi typing for 95% of the typed strains, with a Jaccard index value of 0.9. HLMT is a fast and scalable approach for pathogen typing, suitable for real-time hospital microbiological surveillance. HLMT is also inexpensive, and thus, it is applicable for infection control programs in low- and middle-income countries. IMPORTANCE In this work, we describe hypervariable-locus melting typing (HLMT), a novel fast approach to pathogen typing using the high-resolution melting (HRM) assay. The method includes a novel approach for gene target selection, primer design, and HRM data analysis. We successfully applied this method to distinguish the high-risk clones of Klebsiella pneumoniae, one of the most important nosocomial pathogens worldwide. We also compared HLMT to typing using WGS, the capsular gene wzi, MLST, and PFGE. Our results show that HLMT is a typing method suitable for real-time epidemiological investigation. The application of HLMT to hospital microbiology surveillance can help to rapidly detect outbreak emergence, improving the effectiveness of infection control strategies.


Asunto(s)
Klebsiella pneumoniae , Electroforesis en Gel de Campo Pulsado , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus/métodos , Reacción en Cadena de la Polimerasa
6.
Minerva Pediatr (Torino) ; 74(6): 682-687, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35822582

RESUMEN

The aim of this review was to provide a general overview to the topic of this special issue. In this study the available categories of biotics were defined (i.e., probiotics, prebiotics, postobiotics and synbiotics) as first actors of therapies that target the gut flora, with the aim to modify it in a specific direction, generally with the goal of controlling inflammatory phenomena. The points that must be considered when evaluating the results of these interventions, and, specifically, the changes in gut microbiota following the assumption of biotics were analyzed. This context typically represented the one of clinical trials aimed at inducing or maintaining remission in pediatric autoimmune inflammatory diseases, that often yield conflicting results. We finally attempted to draft possible research developments for the next years.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Simbióticos , Humanos , Niño , Probióticos/uso terapéutico , Prebióticos
7.
Antibiotics (Basel) ; 10(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208220

RESUMEN

Mortality in neonates with Gram-negative bloodstream infections has remained unacceptably high. Very few data are available on the impact of resistance profiles, virulence factors, appropriateness of empirical treatment and clinical characteristics on patients' mortality. A survival analysis to investigate 28-day mortality probability and predictors was performed including (I) infants <90 days (II) with an available Enterobacterales blood isolate with (III) clinical, treatment and 28-day outcome data. Eighty-seven patients were included. Overall, 299 virulence genes were identified among all the pathogens. Escherichia coli had significantly more virulence genes identified compared with other species. A strong positive correlation between the number of resistance and virulence genes carried by each isolate was found. The cumulative probability of death obtained by the Kaplan-Meier survival analysis was 19.5%. In the descriptive analysis, early age at onset, gestational age at onset, culture positive for E. coli and number of classes of virulence genes carried by each isolate were significantly associated with mortality. By Cox multivariate regression, none of the investigated variables was significant. This pilot study has demonstrated the feasibility of investigating the association between neonatal sepsis mortality and the causative Enterobacterales isolates virulome. This relationship needs further exploration in larger studies, ideally including host immunopathological response, in order to develop a tailor-made therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA