Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Intervalo de año de publicación
1.
Food Funct ; 12(7): 3096-3103, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33720258

RESUMEN

INTRODUCTION: Coconut oil has been considered as a therapeutic alternative in several pathologies, but there is limited information regarding its effects on brain functioning. OBJECTIVE: This study analyzed whether early virgin coconut oil (VCO) supplementation interferes with electrical activity of the adult rat brain and its lipid peroxidation. Moreover, it investigated whether the putative effect on brain electrophysiology could be affected by overnutrition occurring during lactation, and/or by environmental enrichment (EE). Electrophysiology was measured through cortical spreading depression (CSD), a phenomenon related to brain excitability. METHODS: Wistar rats were suckled in litters of either nine or three pups, forming nourished (N) or overnourished (ON) groups, respectively. Between the 7th and 30th days of life, half of the animals in each group received VCO (10 mg kg-1 d-1; by gavage). The other half received an equivalent amount of vehicle (V, 0.009% cremophor). On day 36, animals from both groups were subjected to EE for 4 weeks. At 105 ± 15 days of life, each animal was subjected to CSD recordings and lipid peroxidation analyses. RESULTS: Overnutrition during lactation enhanced body and brain weights. VCO decelerated the CSD propagation velocity (control - 3.57 ± 0.23 mm min-1versus VCO - 3.27 ± 0.18 mm min-1; p < 0.001), regardless of whether subjected to overnourishment or EE exposure. Neither VCO nor EE modified the cerebral lipid peroxidation (p > 0.05). CONCLUSION: VCO supplementation impaired the spreading of CSD, indicating reduction of brain excitability. VCO effects occurred regardless of the nutritional state during lactation.


Asunto(s)
Aceite de Coco/administración & dosificación , Depresión de Propagación Cortical/efectos de los fármacos , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Estado Nutricional , Fitoterapia , Ratas , Ratas Wistar
2.
Nutr Neurosci ; 24(2): 130-139, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31030633

RESUMEN

Sepsis is a clinical syndrome with high morbidity and mortality. It is characterized by acute inflammatory response and oxidative stress, which is implicated in cerebral dysfunction. Murici (Byrsonimacrassifolia (L.) Kunth) is a fruit rich in antioxidant compounds, which could be an alternative to prevent damage to tissues induced by sepsis . Here, we evaluated the effects of sepsis on the propagation of cortical spreading depression (CSD) and oxidative stress, and tested the action of murici antioxidant extract in prevention against the effect of sepsis. Male Wistar rats (90-210 days, n = 40) were previously supplemented, orogastrically, with murici extract (150 mg/kg/day or 300 mg/kg/day), or an equivalent volume of the vehicle solution, for fifteen days. Then the animals were subjected to experimental sepsis through cecal ligation and perforation (CLP). Subsequently, CSD recordings were obtained and brain oxidative stress was evaluated. Sepsis decelerated CSD and increased the malondialdehyde (MDA) levels in the brain cortex of the animals. In contrast, septic rats that had been previously supplemented with murici antioxidant extract in doses of 150 and 300 mg/kg/day showed an increase in CSD propagation velocity, low levels of MDA and GSH/GSSG ratio and an increase of superoxide dismutase (SOD) activity, regardless of the dose tested. Our results demonstrate that sepsis affects brain excitability and that this effect can be prevented by murici antioxidant extract. The effects of sepsis and/or murici extract on CSD may be due to the oxidative state of the brain.


Asunto(s)
Antioxidantes/administración & dosificación , Depresión de Propagación Cortical/efectos de los fármacos , Sepsis/fisiopatología , Animales , Frutas/química , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas Wistar
3.
Arq Neuropsiquiatr ; 77(8): 555-559, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31508681

RESUMEN

OBJECTIVE: This study aimed to analyze whether exposure to environmental enrichment (EE) during the juvenile phase of life interferes with the electrical activity of the adult rat brain. In addition, the present research also investigated whether this putative effect on brain electrical activity could be affected by prior overnutrition during lactation. Electrophysiology was measured through cortical spreading depression (CSD), a phenomenon related to brain excitability. METHODS: Wistar rats were suckled in litters of either nine or three pups, forming the nourished (N) or overnourished (ON) groups, respectively. At 36 days old, half of the animals from each nutritional condition were exposed to EE. The other half was kept in the standard environment (SE). At 90-120 days of life, each animal was anesthetized for CSD recordings. RESULTS: Overnutrition during lactation caused increases (p < 0.05) in body and brain weights. The EE decelerated CSD propagation velocity regardless of nutritional state during lactation (p < 0.001). The CSD deceleration in the N-EE group was 23.8% and in the ON-EE group was 15% in comparison with the N-SE and ON-SE groups, respectively. CONCLUSION: Our data demonstrated that EE exposure in the juvenile phase of the rat's life reduced brain excitability, and this effect was observed even if animals were overnourished during lactation. An EE could be considered an adjuvant therapeutic resource to modulate brain excitability.


Asunto(s)
Excitabilidad Cortical/fisiología , Depresión de Propagación Cortical/fisiología , Ambiente , Lactancia/fisiología , Hipernutrición/fisiopatología , Animales , Conducta Animal/fisiología , Peso Corporal/fisiología , Tamaño de los Órganos/fisiología , Distribución Aleatoria , Ratas Wistar , Valores de Referencia , Factores de Tiempo
4.
Arq. neuropsiquiatr ; 77(8): 555-559, Aug. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1019464

RESUMEN

ABSTRACT Objective: This study aimed to analyze whether exposure to environmental enrichment (EE) during the juvenile phase of life interferes with the electrical activity of the adult rat brain. In addition, the present research also investigated whether this putative effect on brain electrical activity could be affected by prior overnutrition during lactation. Electrophysiology was measured through cortical spreading depression (CSD), a phenomenon related to brain excitability. Methods: Wistar rats were suckled in litters of either nine or three pups, forming the nourished (N) or overnourished (ON) groups, respectively. At 36 days old, half of the animals from each nutritional condition were exposed to EE. The other half was kept in the standard environment (SE). At 90-120 days of life, each animal was anesthetized for CSD recordings. Results: Overnutrition during lactation caused increases (p < 0.05) in body and brain weights. The EE decelerated CSD propagation velocity regardless of nutritional state during lactation (p < 0.001). The CSD deceleration in the N-EE group was 23.8% and in the ON-EE group was 15% in comparison with the N-SE and ON-SE groups, respectively. Conclusion: Our data demonstrated that EE exposure in the juvenile phase of the rat's life reduced brain excitability, and this effect was observed even if animals were overnourished during lactation. An EE could be considered an adjuvant therapeutic resource to modulate brain excitability.


RESUMO Objetivo: Este estudo analisou se a exposição ao ambiente enriquecido durante a fase juvenil da vida interferiria na atividade elétrica do cérebro de ratos adultos. Além disso, a presente pesquisa também investigou se esse provável efeito na atividade elétrica cerebral poderia ser afetado pela hipernutrição durante a lactação. A eletrofisiologia foi medida através da depressão alastrante cortical, um fenômeno relacionado à excitabilidade cerebral. Métodos: Ratos Wistar foram amamentados em ninhadas de nove ou três filhotes, formando os grupos nutridos ou hipernutridos, respectivamente. Aos 36 dias, metade dos animais de cada condição nutricional foram expostos ao ambiente enriquecido. A outra metade foi mantida na condição de ambiente padrão. Aos 90-120 dias de vida, foram obtidos os registros da depressão alastrante cortical. Resultados: A hipernutrição durante a lactação causou incrementos (p < 0,05) nos pesos corporal e cerebral.O Ambiente Enriquecido desacelerou a velocidade de propagação da depressão alastrante cortical independentemente do estado nutricional durante a lactação (p < 0,001). A desaceleração da depressão alastrante cortical no grupo nutrido/ambiente enriquecido foi de 23,8% e no grupo hipernutrido/ambiente enriquecido foi de 15% em comparação com os grupos nutrido/ambiente padrão e hipernutrido/ambiente padrão, respectivamente. Conclusão: Nossos dados demonstram que a exposição ao ambiente enriquecido na fase juvenil da vida do rato reduz a excitabilidade cerebral, e esse efeito pode ser observado mesmo se os animais estiverem hipernutridos durante a lactação. O ambiente enriquecido pode ser considerado um recurso terapêutico adjuvante para modular a excitabilidade cerebral.


Asunto(s)
Animales , Depresión de Propagación Cortical/fisiología , Lactancia/fisiología , Hipernutrición/fisiopatología , Ambiente , Excitabilidad Cortical/fisiología , Tamaño de los Órganos/fisiología , Valores de Referencia , Factores de Tiempo , Conducta Animal/fisiología , Peso Corporal/fisiología , Distribución Aleatoria , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA