Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 39(1-3): 141-161, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212212

RESUMEN

Significance: The lack of disease-modifying treatments for Alzheimer's disease (AD) that substantially alter the course of the disease highlights the need for new biological models of disease progression and neurodegeneration. Oxidation of macromolecules within the brain, including lipids, proteins, and DNA, is believed to contribute to AD pathophysiology, concomitant with dysregulation of redox-active metals, such as iron. Creating a unified model of pathogenesis and progression underpinned by iron dysregulation and redox dysregulation in AD could lead to new therapeutic targets with disease-modifying potential. Recent Advances: Ferroptosis, which was named in 2012, is a necrotic form of regulated cell death that depends on both iron and lipid peroxidation. While it is distinct from other types of regulated cell death, ferroptosis is regarded as being mechanistically synonymous with oxytosis. The ferroptosis paradigm has great explanatory potential in describing how neurons degenerate and die in AD. At the molecular level, ferroptosis is executed by the lethal accumulation of phospholipid hydroperoxides generated by the iron-dependent peroxidation of polyunsaturated fatty acids, while the major defensive protein against ferroptosis is the selenoenzyme, glutathione peroxidase 4 (GPX4). An expanding network of protective proteins and pathways have also been identified to complement GPX4 in the protection of cells against ferroptosis, with a central role emerging for nuclear factor erythroid 2-related factor 2 (NRF2). Critical Issues: In this review, we provide a critical overview of the utility of ferroptosis and NRF2 dysfunction in understanding the iron- and lipid peroxide-associated neurodegeneration of AD. Future Directions: Finally, we discuss how the ferroptosis paradigm in AD is providing a new spectrum of therapeutic targets. Antioxid. Redox Signal. 39, 141-161.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Muerte Celular/genética , Peroxidación de Lípido/genética , Hierro/metabolismo
2.
Neurology ; 100(20): e2114-e2124, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36973044

RESUMEN

BACKGROUND AND OBJECTIVES: To evaluate brain volume changes caused by different subclasses of anti-ß-amyloid (Aß) drugs trailed in patients with Alzheimer disease. METHODS: PubMed, Embase, and ClinicalTrials.gov databases were searched for clinical trials of anti-Aß drugs. This systematic review and meta-analysis included adults enrolled in randomized controlled trials of anti-Aß drugs (n = 8,062-10,279). The inclusion criteria were as follows: (1) randomized controlled trials of patients treated with anti-Aß drugs that have demonstrated to favorably change at least one biomarker of pathologic Aß and (2) detailed MRI data sufficient to assess the volumetric changes in at least one brain region. MRI brain volumes were used as the primary outcome measure; brain regions commonly reported include hippocampus, lateral ventricle, and whole brain. Amyloid-related imaging abnormalities (ARIAs) were investigated when reported in clinical trials. Of the 145 trials reviewed, 31 were included in the final analyses. RESULTS: A meta-analysis on the highest dose of each trial on hippocampus, ventricle, and whole brain revealed drug-induced acceleration of volume changes that varied by anti-Aß drug class. Secretase inhibitors accelerated atrophy to the hippocampus (Δ placebo - Δ drug: -37.1 µL [19.6% more than placebo]; 95% CI -47.0 to -27.1) and whole brain (Δ placebo - Δ drug: -3.3 mL [21.8% more than placebo]; 95% CI -4.1 to 2.5). Conversely, ARIA-inducing monoclonal antibodies accelerated ventricular enlargement (Δ placebo - Δ drug: +2.1 mL [38.7% more than placebo]; 95% CI 1.5-2.8) where a striking correlation between ventricular volume and ARIA frequency was observed (r = 0.86, p = 6.22 × 10-7). Mild cognitively impaired participants treated with anti-Aß drugs were projected to have a material regression toward brain volumes typical of Alzheimer dementia ∼8 months earlier than if they were untreated. DISCUSSION: These findings reveal the potential for anti-Aß therapies to compromise long-term brain health by accelerating brain atrophy and provide new insight into the adverse impact of ARIA. Six recommendations emerge from these findings.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Adulto , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Atrofia/tratamiento farmacológico
3.
J Gerontol A Biol Sci Med Sci ; 78(1): 16-24, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35869751

RESUMEN

Sarcopenia is an age-related condition of slow, progressive loss of muscle mass and strength, which contributes to frailty, increased risk of hospitalization and mortality, and increased health care costs. The incidence of sarcopenia is predicted to increase to >200 million affected older adults worldwide over the next 40 years, highlighting the urgency for understanding biological mechanisms and developing effective interventions. An understanding of the mechanisms underlying sarcopenia remains incomplete. Iron in the muscle is important for various metabolic functions, including oxygen supply and electron transfer during energy production, yet these same chemical properties of iron may be deleterious to the muscle when either in excess or when biochemically unshackled (eg, in ferroptosis), it can promote oxidative stress and induce inflammation. This review outlines the mechanisms leading to iron overload in muscle with aging and evaluates the evidence for the iron overload hypothesis of sarcopenia. Based on current evidence, studies are needed to (a) determine the mechanisms leading to iron overload in skeletal muscle during aging; and (b) investigate whether skeletal muscles are functionally deficient in iron during aging leading to impairments in oxidative metabolism.


Asunto(s)
Sobrecarga de Hierro , Sarcopenia , Humanos , Anciano , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Hierro , Homeostasis , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/patología
4.
J Cachexia Sarcopenia Muscle ; 13(3): 1541-1553, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35249268

RESUMEN

BACKGROUND: Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS: We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS: We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS: Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.


Asunto(s)
Sobrecarga de Hierro , Distrofia Muscular de Duchenne , Animales , Deferiprona , Distrofina/genética , Ferritinas , Fibrosis , Hemo/metabolismo , Hierro/metabolismo , Quelantes del Hierro , Sobrecarga de Hierro/etiología , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Especies Reactivas de Oxígeno/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 12(2): 476-492, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33665974

RESUMEN

BACKGROUND: Oxidative stress is implicated in the insidious loss of muscle mass and strength that occurs with age. However, few studies have investigated the role of iron, which is elevated during ageing, in age-related muscle wasting and blunted repair after injury. We hypothesized that iron accumulation leads to membrane lipid peroxidation, muscle wasting, increased susceptibility to injury, and impaired muscle regeneration. METHODS: To examine the role of iron in age-related muscle atrophy, we compared the skeletal muscles of 3-month-old with 22- to 24-month-old 129SvEv FVBM mice. We assessed iron distribution and total elemental iron using laser ablation inductively coupled plasma mass spectrometry and Perls' stain on skeletal muscle cross-sections. In addition, old mice underwent ischaemia-reperfusion (IR) injury (90 min ischaemia), and muscle regeneration was assessed 14 days after injury. Immunoblotting was used to determine lipid peroxidation (4HNE) and iron-related proteins. To determine whether muscle iron content can be altered, old mice were treated with deferiprone (DFP) in the drinking water, and we assessed its effects on muscle regeneration after injury. RESULTS: We observed a significant increase in total elemental iron (+43%, P < 0.05) and lipid peroxidation (4HNE: +76%, P < 0.05) in tibialis anterior muscles of old mice. Iron was further increased after injury (adult: +81%, old: +135%, P < 0.05) and associated with increased lipid peroxidation (+41%, P < 0.05). Administration of DFP did not impact iron or measures of lipid peroxidation in skeletal muscle or modulate muscle mass. Increased muscle iron concentration and lipid peroxidation were associated with less efficient regeneration, evident from the smaller fibres in cross-sections of tibialis anterior muscles (-24%, P < 0.05) and an increased percentage of fibres with centralized nuclei (+4124%, P < 0.05) in muscles of old compared with adult mice. Administration of DFP lowered iron after IR injury (PRE: -32%, P < 0.05 and POST: -41%, P < 0.05), but did not translate to structural improvements. CONCLUSIONS: Muscles from old mice have increased iron levels, which are associated with increased lipid peroxidation, increased susceptibility to IR injury, and impaired muscle regeneration. Our results suggest that iron is involved in effective muscle regeneration, highlighting the importance of iron homeostasis in muscle atrophy and muscle repair.


Asunto(s)
Músculo Esquelético , Daño por Reperfusión , Animales , Hierro , Isquemia , Ratones , Regeneración
7.
Sci Rep ; 9(1): 12982, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506484

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.


Asunto(s)
Modelos Animales de Enfermedad , Glicinérgicos/administración & dosificación , Glicina/administración & dosificación , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Prednisolona/farmacología , Animales , Antiinflamatorios/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...