RESUMEN
Among migratory vertebrates, high levels of fidelity to non-breeding sites during adulthood are common. If occupied sites vary in quality, strong site fidelity can have profound consequences for individual fitness and population demography. Given the prevalence of adult site fidelity, the regions of the non-breeding range to which juveniles first migrate, and the scale of any subsequent movements, are likely to be pivotal in shaping distributions and demographic processes across population ranges. However, inherent difficulties in tracking migratory individuals through early life mean that opportunities to quantify juvenile settlement and movements across non-breeding ranges, and the mechanisms involved, are extremely rare. Through long-term, range-wide resightings of hundreds of colour-marked individuals from their first migration to adulthood and the application of state-space models, we quantify levels of juvenile and adult regional-scale movements and distances at different life stages across the whole non-breeding distribution range in a migratory shorebird, the Black-tailed Godwit (Limosa limosa islandica). We show that the probability of individuals changing non-breeding regions (seven historical wintering regions spanning the Western Europe range) at all ages is very low (mean movement probability = 10.9% from first to subsequent winter, and 8.3% from first adult winter to later winters). Movement between regions was also low between autumn and winter of the same year for both juveniles (mean movement probability = 17.0%) and adults (10.4%). The great majority of non-breeding movements from the first autumn to adulthood were within regions and less than 100 km. The scarcity of regional-scale non-breeding movements from the first autumn to adulthood means that the factors influencing where juveniles settle will be key determinants of non-breeding distributions and of the rate and direction of changes in distributions.
RESUMEN
When wintering at different sites, individuals from the same breeding population can experience different conditions, with costs and benefits that may have implications throughout their lifetime. Using a dataset from a longitudinal study on Eurasian Spoonbills from southern France, we explored whether survival rate varied among individuals using different wintering sites. In the last 13 years, more than 3000 spoonbills have been ringed as chicks in Camargue. These birds winter in five main regions that vary in both migratory flyway (East Atlantic vs. Central European) and migration distance (long-distance vs. short-distance vs. resident). We applied Cormack-Jolly-Seber models and found evidence for apparent survival to correlate with migration distance, but not with flyway. During the interval between the first winter sighting and the next breeding period, long-distance migrants had the lowest survival, independently of the flyway taken. Additionally, as they age, spoonbills seem to better cope with migratory challenges and wintering conditions as no differences in apparent survival among wintering strategies were detected during subsequent years. As dispersal to other breeding colonies was rarely observed, the lower apparent survival during this period is likely to be partly driven by lower true survival. This supports the potential role of crossing of natural barriers and degradation of wintering sites in causing higher mortality rates as recorded for a variety of long-distance migrants. Our work confirms variation in demographic parameters across winter distribution ranges and reinforces the importance of longitudinal studies to better understand the complex demographics of migratory species.
Asunto(s)
Migración Animal , Aves , Humanos , Animales , Estudios Longitudinales , Francia , Estaciones del AñoRESUMEN
Climate change is expected to increase the spatial autocorrelation of temperature, resulting in greater synchronization of climate variables worldwide. Possibly such 'homogenization of the world' leads to elevated risks of extinction and loss of biodiversity. In this study, we develop an empirical example on how increasing synchrony of global temperatures can affect population structure in migratory animals. We studied two subspecies of bar-tailed godwits Limosa lapponica breeding in tundra regions in Siberia: yamalensis in the west and taymyrensis further east and north. These subspecies share pre- and post-breeding stopover areas, thus being partially sympatric, but exhibiting temporal segregation. The latter is believed to facilitate reproductive isolation. Using satellite tracking data, we show that migration timing of both subspecies is correlated with the date of snowmelt in their respective breeding sites (later at the taymyrensis breeding range). Snow-cover satellite images demonstrate that the breeding ranges are on different climate trajectories and become more synchronized over time: between 1997 and 2020, the date of snowmelt advanced on average by 0.5 days/year in the taymyrensis breeding range, while it remained stable in the yamalensis breeding range. Previous findings showed how taymyrensis responded to earlier snowmelt by advancing arrival and clutch initiation. In the predicted absence of such advancements in yamalensis, we expect that the two populations will be synchronized by 2036-2040. Since bar-tailed godwits are social migrants, this raises the possibility of population exchange and prompts the question whether the two subspecies can maintain their geographic and morphological differences and population-specific migratory routines. The proposed scenario may apply to a wide range of (social) migrants as temporal segregation is crucial for promoting and maintaining reproductive isolation in many (partially sympatric) migratory populations. Homogenization of previously isolated populations could be an important consequence of increasing synchronized environments and hence climate change.
Asunto(s)
Biodiversidad , Charadriiformes , Animales , Temperatura , Migración Animal , Estaciones del Año , Cambio ClimáticoRESUMEN
AbstractMatching the timing of annual cycle events with the required resources can have crucial consequences for individual fitness. But as the annual cycle is composed of sequential events, a delay at any point may be carried over to the subsequent stage (or more, in a domino effect) and negatively influence individual performance. To investigate how migratory animals navigate their annual schedule and where and when it may be adjusted, we used full annual cycle data on 38 Icelandic whimbrels (Numenius phaeopus islandicus) tracked over 7 years-a subspecies that typically performs long-distance migrations to West Africa. We found that individuals apparently used the wintering sites to compensate for delays that mostly arose as a result of previous successful breeding, and a domino effect was observed from spring departure to laying date, with the potential to affect breeding output. However, the total time saved during all stationary periods is apparently enough to avoid interannual effects between breeding seasons. These findings highlight the importance of preserving good-quality nonbreeding sites in which individuals may adjust annual schedules and avoid potentially adverse effects of arriving late at the breeding grounds.
Asunto(s)
Aves , Charadriiformes , Animales , Estaciones del AñoRESUMEN
In migratory systems, variation in individual phenology can arise through differences in individual migratory behaviors, and this may be particularly apparent in partial migrant systems, where migrant and resident individuals are present within the same population. Links between breeding phenology and migratory behavior or success are generally investigated at the individual level. However, for breeding phenology in particular, the migratory behaviors of each member of the pair may need to be considered simultaneously, as breeding phenology will likely be constrained by timing of the pair member that arrives last, and carryover effects on breeding success may vary depending on whether pair members share the same migratory behavior or not. We used tracking of marked individuals and monitoring of breeding success from a partially migrant population of Eurasian oystercatchers (Haematopus ostralegus) breeding in Iceland to test whether (a) breeding phenology varied with pair migratory behavior; (b) within-pair consistency in timing of laying differed among pair migratory behaviors; and (c) reproductive performance varied with pair migratory behavior, timing of laying, and year. We found that annual variation in timing of laying differed among pair migratory behaviors, with resident pairs being more consistent than migrant and mixed pairs, and migrant/mixed pairs breeding earlier than residents in most years but later in one (unusually cold) year. Pairs that laid early were more likely to replace their clutch after nest loss, had higher productivity and higher fledging success, independent of pair migratory behavior. Our study suggests that the links between individual migratory behavior and reproductive success can vary over time and, to a much lesser extent, with mate migratory behavior and can be mediated by differences in laying dates. Understanding these cascading effects of pair phenology on breeding success is likely to be key to predicting the impact of changing environmental conditions on migratory species.
RESUMEN
Understanding the relationship between migratory performance and fitness is crucial for predicting population dynamics of migratory species. In this study, we used geolocators to explore migration performance (speed and duration of migratory movements, migratory timings) and its association with breeding phenology and productivity in an Afro-Palearctic insectivore, the European bee-eater (Merops apiaster), breeding in Iberian Peninsula. Bee-eaters migrated at higher travel speeds and had shorter travel duration in spring compared to autumn. Individuals that departed earlier or spent fewer days in-flight arrived earlier to the breeding areas. Our results show overall positive, but year-specific, linkages between arrival and laying dates. In one year, laying was earlier and productivity was higher, remaining constant throughout the season, while in the subsequent year productivity was lower and, importantly, declined with laying date. These results suggest that arriving earlier can be advantageous for bee-eaters, as in years when breeding conditions are favourable, early and late breeders produce high and similar number of fledglings, but when conditions are unfavourable only early breeders experience high productivity levels.
Asunto(s)
Migración Animal , Aves/fisiología , Conducta Alimentaria , Reproducción , Estaciones del Año , África Occidental , Distribución Animal , Animales , Abejas , Europa (Continente) , Femenino , Sistemas de Información Geográfica , Geografía , Masculino , Dinámica Poblacional , España , Factores de TiempoRESUMEN
The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.
Asunto(s)
Migración Animal , Seguimiento de Parámetros Ecológicos , Aclimatación , Animales , Archivos , Regiones Árticas , PoblaciónAsunto(s)
Aeropuertos , Migración Animal , Aves , Conservación de los Recursos Naturales , Humedales , Animales , PortugalRESUMEN
Amongst other factors, host behaviour critically determines the patterns with which blood parasites occur in wild host populations. In particular, migratory hosts that sequentially occupy distant sites within and across years are expected to show distinct patterns of blood parasitism depending on their population-specific schedules and whereabouts. Here, we monitored haemosporidian parasitism in two populations of European bee-eaters (Merops apiaster), breeding in Portugal and Germany, with fundamentally different spatiotemporal migration patterns and colonisation histories. We describe and compare the composition of their parasite fauna as well as host population-, age- and sex-specific patterns in the frequency and intensity of infections. We found haemosporidian prevalence to be higher in Portugal compared with Germany and the prevalence generally increased with host age in both populations. Bee-eaters breeding in Portugal and wintering in western Africa mostly hosted parasites of the genus Haemoproteus, while Plasmodium lineages prevailed in birds breeding in Germany and wintering in central Africa. We found 18 genetic lineages, of which nine uniquely occurred in Germany, three uniquely in Portugal and six occurred in both breeding populations. The infection intensities (= % infected per inspected erythrocytes) ranged from 0.002% up to maximally 2.5% in Portugal and 9.6% in Germany. The intensity was higher in Germany compared with Portugal, vastly varied between the parasite genera (Haemoproteus > Plasmodium), but also differed between lineages of the same genus. Our results suggest that populations from different parts of a host's breeding range differ in prevalence and the composition of their haemosporidian assemblages, rather than in the intensity of their infections. Whether these patterns are mainly caused by differential habitat use throughout the annual cycle and/or the population-specific co-evolutionary backgrounds of a host species in range expansion remains to be elucidated.
Asunto(s)
Enfermedades de las Aves , Aves/parasitología , Haemosporida , Plasmodium , Infecciones Protozoarias en Animales , África Occidental , Factores de Edad , Animales , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Femenino , Alemania , Masculino , Portugal , Prevalencia , Infecciones Protozoarias en Animales/epidemiologíaRESUMEN
Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.
Asunto(s)
Migración Animal , Aves , Animales , Filogenia , Sesgo de Publicación , Estaciones del AñoRESUMEN
Evolutionary theories of seasonal migration generally assume that the costs of longer migrations are balanced by benefits at the non-breeding destinations. We tested, and rejected, the null hypothesis of equal survival and timing of spring migration for High Arctic breeding sanderling Calidris alba using six and eight winter destinations between 55°N and 25°S, respectively. Annual apparent survival was considerably lower for adult birds wintering in tropical West Africa (Mauritania: 0.74 and Ghana: 0.75) than in three European sites (0.84, 0.84 and 0.87) and in subtropical Namibia (0.85). Moreover, compared with adults, second calendar-year sanderlings in the tropics, but not in Europe, often refrained from migrating north during the first possible breeding season. During northward migration, tropical-wintering sanderlings occurred at their final staging site in Iceland 5-15 days later than birds wintering further north or south. Namibia-wintering sanderlings tracked with solar geolocators only staged in West Africa during southward migration. The low annual survival, the later age of first northward migration and the later passage through Iceland during northward migration of tropical-wintering sanderlings, in addition to the skipping of this area during northward but not southward migration by Namibia-wintering sanderlings, all suggest they face issues during the late non-breeding season in West Africa. Migrating sanderlings defy long distances but may end up in winter areas with poor fitness prospects. We suggest that ecological conditions in tropical West Africa make the fuelling prior to northward departure problematic.
Asunto(s)
Migración Animal , Cruzamiento , Animales , Regiones Árticas , Europa (Continente) , Ghana , Islandia , Mauritania , Namibia , Estaciones del AñoRESUMEN
In migratory birds, early arrival on breeding sites is typically associated with greater breeding success, but the mechanisms driving these benefits are rarely known. One mechanism through which greater breeding success among early arrivers can potentially be achieved is the increased time available for replacement clutches following nest loss. However, the contribution of replacement clutches to breeding success will depend on seasonal variation in nest survival rates, and the consequences for juvenile recruitment of hatching at different times in the season. In particular, lower recruitment rates of late-hatched chicks could offset the benefits to early arrivers of being able to lay replacement clutches, which would reduce the likelihood of replacement clutch opportunities influencing selection on migratory timings. Using a simulation model of time-constrained capacity for replacement clutches, paramaterized with empirically-derived estimates from avian migratory systems, we show that greater reproductive success among early-arriving individuals can arise solely through the greater time capacity for replacement clutches among early arrivers, even when later renesting attempts contribute fewer recruits to the population. However, these relationships vary depending on the seasonal pattern of nest survival. The benefits of early arrival are greatest when nest survival rates are constant or decline seasonally, and early arrival is least beneficial when nest success rates increase over the breeding season, although replacement clutches can mitigate this effect. The time benefits of early arrival facilitating replacement clutches following nest loss may therefore be an important but overlooked source of selection on migratory timings. Empirical measures of seasonal variation in nest survival, renesting, and juvenile recruitment rates are therefore needed in order to identify the costs and benefits associated with individual migration phenology, the selection pressures influencing migratory timings, and the implications for ongoing shifts in migration and breeding phenology.
RESUMEN
Mechanisms underlying fat accumulation for long-distance migration are not fully understood. This is especially relevant in the context of global change, as many migrants are dealing with changes in natural habitats and associated food sources and energy stores. The continental Black-tailed godwit Limosa limosa limosa is a long-distance migratory bird that has undergone a considerable dietary shift over the past few decades. Historically, godwits fed on an animal-based diet, but currently, during the non-breeding period godwits feed almost exclusively on rice seeds. The latter diet may allow building up of their fuel stores for migration by significantly increasing de novo lipogenesis (DNL) activity. Here, we performed an experiment to investigate lipid flux and the abundance of key enzymes involved in DNL in godwits, during fasting and refueling periods at the staging site, while feeding on rice seeds or fly larvae. Despite no significant differences found in enzymatic abundance (FASN, ME1, ACC and LPL) in stored fat, experimental godwits feeding on rice seeds presented high rates of DNL when compared to fly-larvae fed birds (~35 times more) and fasted godwits (no DNL activity). The increase of fractional DNL in godwits feeding on a carbohydrate-rich diet can potentially be enhanced by the fasting period that stimulates lipogenesis. Although requiring further testing, these recent findings provide new insights into the mechanisms of avian fat accumulation during a fasting and refueling cycle and associated responses to habitat and dietary changes in a migratory species.
Asunto(s)
Tejido Adiposo/fisiología , Migración Animal/fisiología , Aves/fisiología , Animales , Dieta , Dietoterapia , Ecosistema , Lipogénesis , Oryza , Estaciones del AñoRESUMEN
Many migratory systems are changing rapidly in space and time, and these changes present challenges for conservation. Changes in local abundance and site occupancy across species' ranges have raised concerns over the efficacy of the existing protected area networks, while changes in phenology can potentially create mismatches in the timing of annual events with the availability of key resources. These changes could arise either through individuals shifting in space and time or through generational shifts in the frequency of individuals using different locations or on differing migratory schedules. Using a long-term study of a migratory shorebird in which individuals have been tracked through a period of range expansion and phenological change, we show that these changes occur through generational shifts in spatial and phenological distributions, and that individuals are highly consistent in space and time. Predictions of future rates of changes in range size and phenology, and their implications for species conservation, will require an understanding of the processes that can drive generational shifts. We therefore explore the developmental, demographic and environmental processes that could influence generational shifts in phenology and distribution, and the studies that will be needed to distinguish among these mechanisms of change. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Asunto(s)
Adaptación Fisiológica , Distribución Animal , Variación Biológica Individual , Charadriiformes/fisiología , Migración Animal , AnimalesRESUMEN
Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
Asunto(s)
Cambio Climático , Comportamiento de Nidificación , Animales , Regiones Árticas , Conducta PredatoriaRESUMEN
In many taxa, the most common form of sex-biased migration timing is protandry-the earlier arrival of males at breeding areas. Here we test this concept across the annual cycle of long-distance migratory birds. Using more than 350 migration tracks of small-bodied trans-Saharan migrants, we quantify differences in male and female migration schedules and test for proximate determinants of sex-specific timing. In autumn, males started migration about 2 days earlier, but this difference did not carry over to arrival at the non-breeding sites. In spring, males on average departed from the African non-breeding sites about 3 days earlier and reached breeding sites ca 4 days ahead of females. A cross-species comparison revealed large variation in the level of protandry and protogyny across the annual cycle. While we found tight links between individual timing of departure and arrival within each migration season, only for males the timing of spring migration was linked to the timing of previous autumn migration. In conclusion, our results demonstrate that protandry is not exclusively a reproductive strategy but rather occurs year-round and the two main proximate determinants for the magnitude of sex-biased arrival times in autumn and spring are sex-specific differences in departure timing and migration duration.
Asunto(s)
Migración Animal , Aves/fisiología , África del Norte , Animales , Europa (Continente) , Femenino , Masculino , Reproducción , Estaciones del Año , Factores Sexuales , Pájaros Cantores/fisiologíaRESUMEN
Phenological changes in response to climate change have been recorded in many taxa, but the population-level consequences of these changes are largely unknown. If phenological change influences demography, it may underpin the changes in range size and distribution that have been associated with climate change in many species. Over the last century, Icelandic black-tailed godwits (Limosa limosa islandica) have increased 10-fold in numbers, and their breeding range has expanded throughout lowland Iceland, but the environmental and demographic drivers of this expansion remain unknown. Here, we explore the potential for climate-driven shifts in phenology to influence demography and range expansion. In warmer springs, Icelandic black-tailed godwits lay their clutches earlier, resulting in advances in hatching dates in those years. Early hatching is beneficial as population-wide tracking of marked individuals shows that chick recruitment to the adult population is greater for early hatched individuals. Throughout the last century, this population has expanded into progressively colder breeding areas in which hatch dates are later, but temperatures have increased throughout Iceland since the 1960s. Using these established relationships between temperature, hatching dates and recruitment, we show that these warming trends have the potential to have fueled substantial increases in recruitment throughout Iceland, and thus to have contributed to local population growth and expansion across the breeding range. The demographic consequences of temperature-mediated phenological changes, such as the advances in lay dates and increased recruitment associated with early hatching reported here, may therefore be key processes in driving population size and range changes in response to climate change.
RESUMEN
BACKGROUND: Pain assessment of patients with traumatic brain injury is a challenge because they are unable to self-report their pain experience. AIMS: To investigate the psychometric properties of validity, reliability, and responsiveness of the Brazilian version of the Behavioral Pain Scale (BPS-Br) in patients with traumatic brain injury. METHODS: This was an observational, cross-sectional, repeated-measure and analytical study. This study was developed at the medical and surgical ICUs in a high-complexity public hospital at Aracaju, Sergipe, Brazil. Thirty-seven adult patients with moderate or severe TBI were included. This study was completed with 444 independent observations, a pairwise comparison, and was performed simultaneously before, during, and after eye cleaning and endotracheal suctioning of 37 adult patients with moderate to severe traumatic brain injury. RESULTS: The BPS-Br had good internal consistency (.7 ≤ α ≤ .9), good discriminant validity (p < .001), moderate to excellent reliability based on inter-rater agreement (intraclass correlation coefficient = 0.66-1.00; κ = 0.5-1.0), and high responsiveness (0.7-1.7). The upper limbs subscale had the highest score during the nociceptive procedure (1.8 ± 0.9). Deep sedation affected the increase of grading during painful procedures (p < .001). CONCLUSIONS: Our results suggest the BPS-Br is a useful tool for clinical practice to evaluate the pain experienced by patients with traumatic brain injury. Further studies of different samples are needed to evaluate the benefits of systematic pain assessment of critically ill patients.
Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Dimensión del Dolor/instrumentación , Psicometría/normas , Adulto , Lesiones Traumáticas del Encéfalo/psicología , Brasil , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dolor/diagnóstico , Dolor/etiología , Dimensión del Dolor/métodos , Dimensión del Dolor/normas , Psicometría/instrumentación , Psicometría/métodos , Reproducibilidad de los ResultadosAsunto(s)
Albúmina Sérica Humana/deficiencia , Albúmina Sérica Humana/genética , Adulto , Femenino , Humanos , Mutación , PortugalRESUMEN
The relative investment of females and males into parental care might depend on the population's adult sex-ratio. For example, all else being equal, males should be the more caring sex if the sex-ratio is male biased. Whether such outcomes are evolutionary fixed (i.e. related to the species' typical sex-ratio) or whether they arise through flexible responses of individuals to the current population sex-ratio remains unclear. Nevertheless, a flexible response might be limited by the evolutionary history of the species, because one sex may have lost the ability to care or because a single parent cannot successfully raise the brood. Here, we demonstrate that after the disappearance of one parent, individuals from 8 out of 15 biparentally incubating shorebird species were able to incubate uniparentally for 1-19 days (median = 3, N = 69). Moreover, their daily incubation rhythm often resembled that of obligatory uniparental shorebird species. Although it has been suggested that in some biparental shorebirds females desert their brood after hatching, we found both sexes incubating uniparentally. Strikingly, in 27% of uniparentally incubated clutches - from 5 species - we documented successful hatching. Our data thus reveal the potential for a flexible switch from biparental to uniparental care.