Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 121(4): 767-780, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38238886

RESUMEN

Endoplasmic reticulum (ER) plays a pivotal role in the regulation of stress responses in multiple eukaryotic cells. However, little is known about the effector mechanisms that regulate stress responses in ER of the malaria parasite. Herein, we aimed to identify the importance of a transmembrane protein 33 (TMEM33)-domain-containing protein in life cycle of the rodent malaria parasite Plasmodium berghei. TMEM33 is an ER membrane-resident protein that is involved in regulating stress responses in various eukaryotic cells. A C-terminal tagged TMEM33 was localized in the ER throughout the blood and mosquito stages of development. Targeted deletion of TMEM33 confirmed its importance for asexual blood stages and ookinete development, in addition to its essential role for sporozoite infectivity in the mammalian host. Pilot scale analysis shows that the loss of TMEM33 results in the initiation of ER stress response and induction of autophagy. Our findings conclude an important role of TMEM33 in the development of all life cycle stages of the malaria parasite, which indicates its potential as an antimalarial target.


Asunto(s)
Malaria , Plasmodium berghei , Animales , Retículo Endoplásmico/metabolismo , Estadios del Ciclo de Vida , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo
2.
Sci Rep ; 13(1): 12177, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500682

RESUMEN

The control of malaria parasite transmission from mosquitoes to humans is hampered by decreasing efficacies of insecticides, development of drug resistance against the last-resort antimalarials, and the absence of effective vaccines. Herein, the anti-plasmodial transmission blocking activity of a recombinant Aspergillus oryzae (A. oryzae-R) fungus strain, which is used in human food industry, was investigated in laboratory-reared Anopheles stephensi mosquitoes. The recombinant fungus strain was genetically modified to secrete two anti-plasmodial effector peptides, MP2 (midgut peptide 2) and EPIP (enolase-plasminogen interaction peptide) peptides. The transstadial transmission of the fungus from larvae to adult mosquitoes was confirmed following inoculation of A. oryzae-R in the water trays used for larval rearing. Secretion of the anti-plasmodial effector peptides inside the mosquito midguts inhibited oocyst formation of P. berghei parasites. These results indicate that A. oryzae can be used as a paratransgenesis model carrying effector proteins to inhibit malaria parasite development in An. stephensi. Further studies are needed to determine if this recombinant fungus can be adapted under natural conditions, with a minimal or no impact on the environment, to target mosquito-borne infectious disease agents inside their vectors.


Asunto(s)
Anopheles , Aspergillus oryzae , Malaria , Parásitos , Animales , Adulto , Humanos , Anopheles/parasitología , Oocistos , Aspergillus oryzae/genética , Plasmodium berghei/genética , Larva , Mosquitos Vectores , Malaria/parasitología
3.
Infect Immun ; 91(7): e0016723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37260388

RESUMEN

A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.


Asunto(s)
Carboxiliasas , Culicidae , Malaria , Parásitos , Animales , Masculino , Culicidae/parasitología , Aminoácidos/metabolismo , Lisina/metabolismo , Malaria/parasitología , Bacterias , Células Germinativas/metabolismo , Carboxiliasas/metabolismo
4.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36990657

RESUMEN

Iron is an essential cofactor for eukaryotic cells, as well as a toxic metal under certain conditions. On the other hand, glucose is the preferred energy and carbon source by most organisms and is an important signaling molecule in the regulation of biological processes. In Schizosaccharomyces pombe, the Ght5 hexose transporter, known as a high affinity glucose transporter, is required for cell proliferation in low glucose concentrations. Herein, we aimed to investigate the effects of iron stress on the Ght5 hexose transporter under glucose repression and derepression conditions. The effect of iron stress on the expression profile of the ght5 gene was analyzed by RT-qPCR and western blot. The localization of the Ght5-mNeonGreen fusion protein examined with confocal microscopy. Our results revealed that iron stress had an inhibitory effect on ght5 expression, and it altered Ght5 localization on the cell surface, causing it to accumulate in the cytoplasm.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Glucosa/metabolismo , Regulación Fúngica de la Expresión Génica
5.
Vaccine ; 41(7): 1281-1285, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36653222

RESUMEN

Genetically-growth-attenuated blood-stage parasites were generated inPlasmodium falciparumby targeted deletion of NT1 (Nucleoside Transporter-1) gene, and Pfnt1(-) parasites only grew after providing the culture with supra-physiological concentrations of purines. Genetically-attenuatedP. yoeliint1(-)parasites induced sterile-protection against homologous blood-stage infectious challenge after immunization with single subpatent doses, which remained subpatent even in immune-compromised mice. Here, we showed that immunizations with frozen-stocks of equally-mixedP. bergheiandP. yoelii nt1(-)parasites in single subcutaneous doses, which did not lead to patent blood-stage infection, conferred sterile protection against intravenous infectious blood-stage challenge with wild-type parasites ofP. bergheiANKA andP. yoelii17X-NL strains. This data highlights the possibility that a single subcutaneous sub-patent dose of two species of genetically-growth-attenuated parasites, which can protect humans against twoPlasmodiumspp. infections, could be developed in cultures provided with supra-physiological concentrations of purines, and shipped to endemic areas as frozen-stock doses.


Asunto(s)
Vacunas contra la Malaria , Malaria , Parásitos , Plasmodium yoelii , Plasmodium , Humanos , Ratones , Animales , Inmunización , Vacunación , Plasmodium berghei
6.
Pathog Glob Health ; 117(3): 284-292, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36003062

RESUMEN

All protozoan parasites are lacking the pathway to synthesize purines de novo and therefore they depend on their host cells to provide purines. A number of highly conserved nucleoside transporter (NT) proteins are encoded in malaria parasite genomes, of which NT1 is characterized in Plasmodium falciparum and P. yoelii as a plasma membrane protein that is responsible for salvage of purines from the host, and NT2 is an endoplasmic membrane NT protein. Whereas NT3 is only present in primate malaria parasites, little is known about NT4, which is conserved in all malaria parasite species. Herein, we targeted NT4 gene for deletion in P. berghei. NT4 knockout parasites developed normally as blood stages, ookinetes and formed oocysts with sporozoites compared with wild-type (WT) P. berghei ANKA parasites. However, nt4(-) sporozoites showed significantly decreased egress from oocysts to hemolymph, significant reduction of colonization of the salivary glands, and complete abolishment of infection of the mammalian host by salivary gland and hemolymph sporozoites. Therefore, we identify NT4 as a NT that is important, not for replication and growth, but for sporozoite infectivity functions.


Asunto(s)
Anopheles , Malaria , Parásitos , Animales , Esporozoítos/genética , Anopheles/genética , Oocistos/metabolismo , Malaria/parasitología , Proteínas Protozoarias/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Mamíferos/metabolismo
7.
Nature ; 612(7940): 534-539, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477528

RESUMEN

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Asunto(s)
Plasmodium falciparum , Esporozoítos , Animales , Humanos , Ratones , Culicidae/parasitología , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/química , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/patogenicidad , Hepatocitos/parasitología , Hígado/parasitología , Proteína 1 de Superficie de Merozoito , Eritrocitos/parasitología , Técnicas In Vitro
8.
Antimicrob Agents Chemother ; 66(12): e0026922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36342168

RESUMEN

We generated highly chloroquine (CQ)-resistant (ResCQ) Plasmodium yoelii parasites by stepwise exposure to increasing concentrations of CQ and CQ-sensitive parasites (SenCQ) by parallel mock treatments. No mutations in genes that are associated with drug resistance were detected in ResCQ clones. Autophagy-related genes were highly upregulated in SenCQ compared to ResCQ parasites during CQ treatment. This indicates that CQ resistance can be developed in the malaria parasite by the inhibition of autophagy as an alternative drug resistance mechanism.


Asunto(s)
Antimaláricos , Cloroquina , Resistencia a Medicamentos , Plasmodium yoelii , Proteínas Protozoarias , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/tratamiento farmacológico , Malaria/parasitología , Proteínas Protozoarias/genética , Plasmodium yoelii/efectos de los fármacos , Plasmodium yoelii/genética
9.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36366392

RESUMEN

Host cell-free, axenic development of liver stages (LS) of the malaria parasite has been demonstrated. Here we explored axenic liver stages as a novel live whole parasite malaria vaccine platform, which is unaltered and not prone to human-error, compared to the immunization with live-attenuated sporozoites that must be done intravenously. We show that in contrast to live sporozoites, axenic LS are not infectious to the immunized host. Subcutaneous immunizations of mice with Plasmodium yoelii axenic LS, developed from wild-type (WT) sporozoites or WT sporozoites expressing enhanced-GFP, conferred sterile protection against P. yoelii infectious sporozoite challenge. Thus, axenic liver stages of P. falciparum and P. vivax might constitute an attractive alternative to live sporozoite immunization.

10.
Microbiol Res ; 265: 127181, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162149

RESUMEN

Positively-charged polyamines are essential molecules for the replication of eukaryotic cells and are particularly important for the rapid proliferation of parasitic protozoa and cancer cells. Unlike in Trypanosoma brucei, the inhibition of the synthesis of intermediate polyamine Putrescine caused only partial defect in malaria parasite blood-stage growth. In contrast, reducing the intracellular concentrations of Spermidine and Spermine by polyamine analogs caused significant defects in blood-stage growth in Plasmodium yoelii and P. falciparum. However, little is known about the synthesizing enzyme of Spermidine and Spermine in the malaria parasite. Herein, malaria parasite conserved Spermidine Synthase (SpdS) gene was targeted for deletion/complementation analyses by knockout/knock-in constructs in P. yoelii. SpdS was found to be essential for blood-stage growth. Live fluorescence imaging in blood-stages and sporozoites confirmed a specific mitochondrial localization, which is not known for any polyamine-synthesizing enzyme so far. This study identifies SpdS as an excellent drug targeting candidate against the malaria parasite, which is localized to the parasite mitochondrion.


Asunto(s)
Malaria , Parásitos , Animales , Mitocondrias , Plasmodium falciparum/genética , Poliaminas , Putrescina , Espermidina , Espermidina Sintasa/genética , Espermina
11.
Biomed Opt Express ; 13(7): 3904-3921, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35991917

RESUMEN

Diagnosis of malaria in endemic areas is hampered by the lack of a rapid, stain-free and sensitive method to directly identify parasites in peripheral blood. Herein, we report the use of Fourier ptychography to generate wide-field high-resolution quantitative phase images of erythrocytes infected with malaria parasites, from a whole blood sample. We are able to image thousands of erythrocytes (red blood cells) in a single field of view and make a determination of infection status of the quantitative phase image of each segmented cell based on machine learning (random forest) and deep learning (VGG16) models. Our random forest model makes use of morphology and texture based features of the quantitative phase images. In order to label the quantitative images of the cells as either infected or uninfected before training the models, we make use of a Plasmodium berghei strain expressing GFP (green fluorescent protein) in all life cycle stages. By overlaying the fluorescence image with the quantitative phase image we could identify the infected subpopulation of erythrocytes for labelling purposes. Our machine learning model (random forest) achieved 91% specificity and 72% sensitivity while our deep learning model (VGG16) achieved 98% specificity and 57% sensitivity. These results highlight the potential for quantitative phase imaging coupled with artificial intelligence to develop an easy to use platform for the rapid and sensitive diagnosis of malaria.

12.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35214758

RESUMEN

Here, we present the construction of an attenuated herpes simplex virus type-1 (HSV-1)-vectored vaccine, expressing three liver-stage (LS) malaria parasite exported proteins (EXP1, UIS3 and TMP21) as fusion proteins with the VP26 viral capsid protein. Intramuscular and subcutaneous immunizations of mice with a pooled vaccine, composed of the three attenuated virus strains expressing each LS antigen, induced sterile protection against the intravenous challenge of Plasmodium yoelii 17X-NL salivary gland sporozoites. Our data suggest that this malaria vaccine may be effective in preventing malaria parasite infection using practical routes of immunization in humans.

13.
Vaccines (Basel) ; 8(1)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936739

RESUMEN

The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%-88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.

14.
Biomolecules ; 9(10)2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591333

RESUMEN

The rotating-crystal magneto-optical diagnostic (RMOD) technique was developed as a sensitive and rapid platform for malaria diagnosis. Herein, we report a detailed in vivo assessment of the synchronized Plasmodium vinckei lentum strain blood-stage infections by the RMOD method and comparing the results to the unsynchronized Plasmodium yoelii 17X-NL (non-lethal) infections. Furthermore, we assess the hemozoin production and clearance dynamics in chloroquine-treated compared to untreated self-resolving infections by RMOD. The findings of the study suggest that the RMOD signal is directly proportional to the hemozoin content and closely follows the actual parasitemia level. The lack of long-term accumulation of hemozoin in peripheral blood implies a dynamic equilibrium between the hemozoin production rate of the parasites and the immune system's clearing mechanism. Using parasites with synchronous blood stage cycle, which resemble human malaria parasite infections with Plasmodium falciparum and Plasmodium vivax, we are demonstrating that the RMOD detects both hemozoin production and clearance rates with high sensitivity and temporal resolution. Thus, RMOD technique offers a quantitative tool to follow the maturation of the malaria parasites even on sub-cycle timescales.


Asunto(s)
Hemoproteínas/metabolismo , Malaria/diagnóstico , Parasitemia/diagnóstico , Plasmodium/metabolismo , Animales , Análisis Químico de la Sangre , Cloroquina/administración & dosificación , Cloroquina/farmacología , Modelos Animales de Enfermedad , Diagnóstico Precoz , Femenino , Hemoproteínas/efectos de los fármacos , Humanos , Estadios del Ciclo de Vida , Malaria/tratamiento farmacológico , Ratones , Microscopía de Polarización , Parasitemia/tratamiento farmacológico , Plasmodium/clasificación , Plasmodium/efectos de los fármacos , Sensibilidad y Especificidad
15.
J Vis Exp ; (147)2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31205293

RESUMEN

Recent advances in genetics and systems biology technologies have promoted our understanding of the biology of malaria parasites on the molecular level. However, effective malaria parasite targets for vaccine and chemotherapy development are still limited. This is largely due to the unavailability of relevant and practical in vivo infection models for human Plasmodium species, most notably for P. falciparum and P. vivax. Therefore, rodent malaria species have been extensively used as practical alternative in vivo models for malaria vaccine, drug targeting, immune response, and functional characterization studies of conserved Plasmodiumspp. genes. Indeed, rodent malaria models have proven to be invaluable, especially for exploring mosquito transmission and liver stage biology, and were indispensable for immunological studies. However, there are discrepancies in the methods used to evaluate the phenotypes of transgenic and wild-type asexual and sexual blood-stage parasites. Examples of these discrepancies are the choice of an intravenous vs. intraperitoneal infection of rodents with blood-stage parasites and the evaluation of male gamete exflagellation. Herein, we detail standardized experimental methods to evaluate the phenotypes of asexual and sexual blood stages in transgenic parasites expressing reporter-gene or wild-type rodent malaria parasite species. We also detail the methods to evaluate the phenotypes of malaria parasite mosquito stages (gametes, ookinetes, oocysts, and sporozoites) inside Anopheles mosquito vectors. These methods are detailed and simplified here for the lethal and non-lethal strains of P. berghei and P. yoelii but can also be applied with some adjustments to P. chabaudi and P. vinckei rodent malaria species.


Asunto(s)
Malaria/parasitología , Parásitos/patogenicidad , Animales , Humanos , Ratones , Roedores
16.
Sci Rep ; 7(1): 14234, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079738

RESUMEN

The biosynthesis of the major acyl carrier Coenzyme A from pantothenic acid (PA) is critical for survival of Plasmodium falciparum within human erythrocytes. Accordingly, a PA analog α-PanAm showed potent activity against blood stage parasites in vitro; however, its efficacy in vivo and its mode of action remain unknown. We developed a new synthesis route for α-PanAm and showed that the compound is highly effective against blood stages of drug-sensitive and -resistant P. falciparum strains, inhibits development of P. berghei in hepatocytes, and at doses up to 100 mg/kg also inhibits blood stage development of P. chabaudi in mice. We used yeast and its pantothenate kinase Cab1 as models to characterize mode of action of α-PanAm and found that α-PanAm inhibits yeast growth in a PA-dependent manner, and its potency increases dramatically in a yeast mutant with defective pantothenate kinase activity. Biochemical analyses using 14C-PA as a substrate demonstrated that α-PanAm is a competitive inhibitor of Cab1. Interestingly, biochemical and mass spectrometry analyses also showed that the compound is phosphorylated by Cab1. Together, these data suggest that α-PanAm exerts its antimicrobial activity by direct competition with the natural substrate PA for phosphorylation by the pantothenate kinase.


Asunto(s)
Antimaláricos/farmacología , Ácido Pantoténico/análogos & derivados , Ácido Pantoténico/metabolismo , Animales , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Concentración 50 Inhibidora , Ratones , Ácido Pantoténico/farmacología , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Plasmodium/efectos de los fármacos , Plasmodium/metabolismo , Plasmodium/fisiología
17.
mBio ; 8(4)2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851851

RESUMEN

In sexually reproducing organisms, meiosis is an essential step responsible for generation of haploid gametes from diploid somatic cells. The quest for understanding regulatory mechanisms of meiotic recombination in Plasmodium led to identification of a gene encoding a protein that contains 11 copies of C2H2 zinc fingers (ZnF). Reverse genetic approaches were used to create Plasmodium berghei parasites either lacking expression of full-length Plasmodium berghei zinc finger protein (PbZfp) (knockout [KO]) or expressing PbZfp lacking C-terminal zinc finger region (truncated [Trunc]). Mice infected with KO parasites survived two times longer (P < 0.0001) than mice infected with wild-type (WT) parasites. In mosquito transmission experiments, the infectivity of KO and Trunc parasites was severely compromised (>95% oocyst reduction). KO parasites revealed a total lack of trimethylation of histone 3 at several lysine residues (K4, K27, and K36) without any effect on acetylation patterns (H3K9, H3K14, and H4K16). Reduced DNA damage and reduced expression of topoisomerase-like Spo11 in the KO parasites with normal Rad51 expression further suggest a functional role for PbZfp during genetic recombination that involves DNA double-strand break (DSB) formation followed by DNA repair. These finding raise the possibility of some convergent similarities of PbZfp functions to functions of mammalian PRDM9, also a C2H2 ZnF protein with histone 3 lysine 4 (H3K4) methyltransferase activity. These functions include the major role played by the latter in binding recombination hotspots in the genome during meiosis and trimethylation of the associated histones and subsequent chromatin recruitment of topoisomerase-like Spo11 to catalyze DNA DSB formation and DMC1/Rad51-mediated DNA repair and homologous recombination.IMPORTANCE Malaria parasites are haploid throughout their life cycle except for a brief time period when zygotes are produced as a result of fertilization between male and female gametes during transmission through the mosquito vector. The reciprocal recombination events that follow zygote formation ensure orderly segregation of homologous chromosomes during meiosis, creating genetic diversity among offspring. Studies presented in the current manuscript identify a novel C2H2 ZnF-containing protein exhibiting multifunctional roles in parasite virulence, mosquito transmission, and homologous recombination during meiosis. Understanding the transmission biology of malaria will result in the identification of novel targets for transmission-blocking intervention approaches.


Asunto(s)
Dedos de Zinc CYS2-HIS2/fisiología , Daño del ADN , Código de Histonas , Malaria/transmisión , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Acetilación , Animales , Culicidae/parasitología , Culicidae/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética , Recombinación Homóloga , Malaria/parasitología , Metilación , Ratones , Plasmodium berghei/genética , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-28676844

RESUMEN

Coenzyme A (CoA) is an essential universal cofactor for all prokaryotic and eukaryotic cells. In nearly all non-photosynthetic cells, CoA biosynthesis depends on the uptake and phosphorylation of vitamin B5 (pantothenic acid or pantothenate). Recently, putative pantothenate transporter (PAT) and pantothenate kinases (PanKs) were functionally characterized in P. yoelii. PAT and PanKs were shown to be dispensable for blood stage development, but they were essential for mosquito stages development. Yet, little is known about the cellular functions of the other enzymes of the CoA biosynthesis pathway in malaria parasite life cycle stages. All enzymes of this pathway were targeted for deletion or deletion/complementation analyses by knockout/knock-in plasmid constructs to reveal their essential roles in P. yoelii life cycle stages. The intermediate enzymes PPCS (Phosphopantothenylcysteine Synthase), PPCDC (Phosphopantothenylcysteine Decarboxylase) were shown to be dispensable for asexual and sexual blood stage development, but they were essential for oocyst development and the production of sporozoites. However, the last two enzymes of this pathway, PPAT (Phosphopantetheine Adenylyltransferase) and DPCK (Dephospho-CoA Kinase), were essential for blood stage development. These results indicate alternative first substrate requirement for the malaria parasite, other than the canonical pantothenate, for the synthesis of CoA in the blood but not inside the mosquito midgut. Collectively, our data shows that CoA de novo biosynthesis is essential for both blood and mosquito stages, and thus validates the enzymes of this pathway as potential antimalarial targets.


Asunto(s)
Coenzima A/biosíntesis , Coenzima A/genética , Culicidae/parasitología , Malaria/sangre , Malaria/parasitología , Parásitos/genética , Parásitos/metabolismo , Animales , Femenino , Eliminación de Gen , Técnicas de Inactivación de Genes , Estadios del Ciclo de Vida/fisiología , Ratones , Ratones Endogámicos BALB C , Oocistos/metabolismo , Parásitos/citología , Parásitos/enzimología , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
19.
Sci Rep ; 6: 33518, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27644319

RESUMEN

The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.


Asunto(s)
Anopheles/parasitología , Genes Protozoarios , Malaria/parasitología , Parásitos/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium/enzimología , Plasmodium/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Coenzima A/biosíntesis , Secuencia Conservada , Eritrocitos/parasitología , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Estadios del Ciclo de Vida , Malaria/genética , Ratones Endogámicos BALB C , Modelos Biológicos , Oocistos/metabolismo , Parásitos/genética , Parásitos/crecimiento & desarrollo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Plasmodium/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Análisis de Secuencia de ADN , Esporozoítos/metabolismo , Transcripción Genética
20.
Biol Open ; 5(8): 1022-9, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27387533

RESUMEN

Polyamines are positively-charged organic molecules that are important for cellular growth and division. Polyamines and their synthesizing enzymes are particularly abundant in rapidly proliferating eukaryotic cells such as parasitic protozoa and cancer cells. Polyamine biosynthesis inhibitors, such as Elfornithine, are now being considered for cancer prevention and have been used effectively against Trypanosoma brucei Inhibitors of polyamine biosynthesis have caused growth arrest of Plasmodium falciparum blood stages in vitro, but in P. berghei only partial inhibition has been observed. While polyamine biosynthesis enzymes are characterized and conserved in Plasmodium spp., little is known on the biological roles of these enzymes inside malaria parasite hosts. The bifunctional polyamine biosynthesis enzyme S-adenosyl methionine decarboxylase/ornithine decarboxylase (AdoMetDC/ODC) was targeted for deletion in P. yoelii Deletion of AdoMetDC/ODC significantly reduced blood stage parasitemia but Anopheles transmission was completely blocked. We showed that male gametocytogenesis and male gamete exflagellation were abolished and consequently no ookinetes or oocyst sporozoites could be generated from adometdc/odc(-) parasites. Supplementation of putrescine and spermidine did not rescue the defective phenotypes of male gametocytes and gametes of the knockout parasites. These results highlight the crucial role of polyamine homeostasis in the development and functions of Plasmodium erythrocytic stages in the blood and in the mosquito vector and validate polyamine biosynthesis pathway enzymes as drug targeting candidates for malaria parasite transmission blocking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...