Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 5681-5703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882541

RESUMEN

Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization. Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds. Results: The fabricated drug-loaded fibers exhibited diameters of 443 ± 67 nm for moxifloxacin/pirfenidone nanofibers and 488 ± 92 nm for fusidic acid/pirfenidone nanofibers. The encapsulation efficiency, drug loading and drug release studies for the moxifloxacin/pirfenidone nanofibers were found to be 70 ± 3% and 20 ± 1 µg/mg, respectively, for moxifloxacin, and 96 ± 6% and 28 ± 2 µg/mg, respectively, for pirfenidone, with a complete release of both drugs within 24 hours, whereas the fusidic acid/pirfenidone nanofibers were found to be 95 ± 6% and 28 ± 2 µg/mg, respectively, for fusidic acid and 102 ± 5% and 30 ± 2 µg/mg, respectively, for pirfenidone, with a release rate of 66% for fusidic acid and 80%, for pirfenidone after 24 hours. The efficacy of the prepared nanofiber formulations in accelerating wound healing was evaluated using an induced diabetic rat model. All tested formulations showed an earlier complete closure of the wound compared to the controls, which was also supported by the histopathological assessment. Notably, the combination of fusidic acid and pirfenidone nanofibers demonstrated wound healing acceleration on day 8, earlier than all tested groups. Conclusion: These findings highlight the potential of the drug-loaded nanofibrous system as a promising medicated wound dressing for diabetic foot applications.


Asunto(s)
Antibacterianos , Vendajes , Pie Diabético , Liberación de Fármacos , Ácido Fusídico , Moxifloxacino , Nanofibras , Piridonas , Cicatrización de Heridas , Pie Diabético/tratamiento farmacológico , Pie Diabético/terapia , Nanofibras/química , Animales , Moxifloxacino/administración & dosificación , Moxifloxacino/farmacología , Moxifloxacino/química , Moxifloxacino/farmacocinética , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Piridonas/química , Piridonas/farmacología , Piridonas/farmacocinética , Piridonas/administración & dosificación , Ácido Fusídico/administración & dosificación , Ácido Fusídico/farmacología , Ácido Fusídico/química , Ácido Fusídico/farmacocinética , Ratas , Masculino , Diabetes Mellitus Experimental , Povidona/química , Ratas Sprague-Dawley
2.
Pharmaceutics ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38931828

RESUMEN

The increasing prevalence of diabetic wounds presents a significant challenge due to the difficulty of natural healing and various obstacles. Dragon's blood (DB) and Alkanna tinctoria (AT) are well recognized for their potent healing abilities, which include potent antibacterial and anti-inflammatory activities. In this study, electrospun nanofibers (NFs) based on polyvinyl pyrrolidone (PVP) were co-loaded with both DB and AT, aiming to magnify their efficacy as wound-dressing applications for diabetic wound healing. The evaluation of these NFs as wound dressings was conducted using a streptozotocin-induced diabetic rat model. Electrospun NFs were prepared using the electrospinning of the PVP polymer, resulting in nanofibers with consistent, smooth surfaces. The loading capacity (LC) of AT and DB into NFs was 64.1 and 70.4 µg/mg, respectively, while in the co-loaded NFs, LC was 49.6 for AT and 57.2 µg/mg for DB. In addition, X-ray diffraction (XRD) revealed that DB and AT were amorphously dispersed within the NFs. The loaded NFs showed a dissolution time of 30 s in PBS (pH 7.4), which facilitated the release of AT and DB (25-38% after 10 min), followed by a complete release achieved after 180 min. The antibacterial evaluation demonstrated that the DB-AT mixture had potent activity against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). Along with that, the DB-AT NFs showed effective growth inhibition for both P. aeruginosa and S. aureus compared to the control NFs. Moreover, wound healing was evaluated in vivo in diabetic Wistar rats over 14 days. The results revealed that the DB-AT NFs improved wound healing within 14 days significantly compared to the other groups. These results highlight the potential application of the developed DB-AT NFs in wound healing management, particularly in diabetic wounds.

3.
Pharmaceutics ; 15(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37765309

RESUMEN

Hirsutism is a distressing condition that can affect women's self-esteem due to the excessive amount of hair growth in different body parts, including the face. A temporary managing option is to develop a self-care routine to remove unwanted hair through shaving or waxing. Laser or electrolysis are alternative methods, but in some cases, the use of medications, such as the topical cream Vaniqa®, can help in reducing the growth of unwanted hair. Electrospun fibers have been used in several drug delivery applications, including skin care products, owing to their biocompatibility, biodegradability, high surface area-to-volume ratio, and dry nature that can release the encapsulated drugs with maximum skin penetration. Therefore, polyvinyl pyrrolidone (PVP) fibers were fabricated in combination with hyaluronic acid to deliver the active compound of Vaniqa®, i.e., Eflornithine hydrochloride (EFH), as a face mask to inhibit excess facial hair growth. The prepared drug-loaded fibers showed a diameter of 490 ± 140 nm, with an encapsulation efficiency of 88 ± 7% and a drug loading capacity of 92 ± 7 µg/mg. The in vitro drug release of EFH-loaded fibers exhibited an initial burst release of 80% in the first 5 min, followed by a complete release after 360 min, owing to the rapid disintegration of the fibrous mat (2 s). The in vitro cytotoxicity indicated a high safety profile of EFH at all tested concentrations (500-15.625 µg/mL) after 24-h exposure to human dermal fibroblast (HFF-1) cells. Therefore, this drug-loaded nanofibrous system can be considered a potentially medicated face mask for the management of hirsutism, along with the moisturizing effect that it possesses. Topical applications of the developed system showed reduced hair growth in mice to a certain extent.

4.
Immunotherapy ; 13(14): 1215-1229, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34498496

RESUMEN

Over recent years, tremendous advances in immunotherapy approaches have been observed, generating significant clinical progress. Cancer immunotherapy has been shown, in different types of blood cancers, to improve the overall survival of patients. Immunotherapy treatment of hematopoietic malignancies is a newly growing field that has been accelerating over the past years. Several US FDA approved drugs and cell-based therapies are being exploited in the late stage of clinical trials. This review attempt to highlight and discuss the numerous innovative immunotherapy approaches of hematopoietic malignancy ranging from nonmyeloablative transplantation, T-cell immunotherapy, natural killer cells and immune agonist to monoclonal antibodies and vaccination. In addition, a brief discussion on the future advances and accomplishments required to counterpart the current immunotherapeutic approaches for hematopoietic malignancies were also highlighted.


Asunto(s)
Neoplasias Hematológicas/terapia , Inmunoterapia/métodos , Inmunoterapia/tendencias , Humanos
5.
Saudi Pharm J ; 29(8): 807-814, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34408542

RESUMEN

Hand hygiene is one of the effective measures for reducing the transmission of infections. Alcohol-based hand sanitizers containing ethanol or isopropanol are considered efficient alternatives to handwashing with water and soap. Despite being effective against a broad-spectrum of microbes, fining an effective alternative to the alcohol-based hand sanitizers became a necessity owning to the limitations associated with their use, such as skin dryness, irritant contact dermatitis, and intoxication upon their accidental ingestion. Furthermore, in certain circumstances when the demand for alcohol exceeds the supply, like in the current COVID19 pandemic, formulating an effective non-alcoholic hand sanitizer would be a potential solution. Therefore, in this study, a non-alcoholic hand sanitizer containing benzalkonium chloride (BKC) as an active ingredient was prepared and evaluated as a less irritant and more persistent hand sanitizer gel. The hand gel was characterized by pH, viscosity, and spreadability. Results showed that this product has low viscosity, high spreadability and pH of 6.3, which is less likely to cause skin irritation. The antibacterial assessment (zone of inhibition) of the BKC-based hand sanitizer demonstrated antibacterial activities against nine out of eleven gram-positive and gram-negative bacterial strains, while the acceptability study on ten participants showed no signs of skin irritation nor redness upon its application. Consequently, this non-alcoholic based hand sanitizer is suggested as a potential alternative to alcohol-based hand gels.

6.
Int J Mol Sci ; 18(4)2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350354

RESUMEN

Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p < 0.05 and a fold change of ≥1.2) between the non-heated and heated milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen ß and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C.


Asunto(s)
Leche/metabolismo , Proteómica/métodos , Proteína de Suero de Leche/metabolismo , Animales , Camelus , Regulación de la Expresión Génica , Calor , Espectrometría de Masas , Desnaturalización Proteica , Proteína de Suero de Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...