Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Infect Dis ; : 107235, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245315

RESUMEN

BACKGROUND: Host responses to infection are a major determinant of outcome. However, the existence of different response profiles in patients with endocarditis has not been addressed. Our objective was to apply transcriptomics to identify endotypes in patients with infective endocarditis. METHODS: Thirty-two patients with infective endocarditis were studied. Clinical data and a blood sample were collected at diagnosis, and RNA sequenced. Gene expression was used to identify two clusters (endocarditis endotypes EE1 and EE2). RNA sequencing was repeated after surgery. Transcriptionally active cell populations were identified by deconvolution. Differences between endotypes in clinical data, survival, gene expression and molecular pathways involved were assessed. Identified endotypes were recapitulated in a cohort of COVID19 patients. RESULTS: 18 and 14 patients were assigned to EE1 and EE2 respectively, with no differences in clinical data. Patients assigned to EE2 showed an enrichment in genes related to T-cell maturation and a decrease in the activation of the STAT pathway, with higher counts of active T-cells and lower counts of neutrophils. Fourteen patients (9 in EE1 and 5 in EE2) were submitted to surgery. Surgery in EE2 patients shifted gene expression towards a EE1-like profile. In-hospital mortality was higher in EE1 (56% vs 14%, p=0.027) with adjusted hazard ratio of 12.987 (95% confidence interval 3.356 - 50]. Translation of these endotypes to COVID19 and non-COVID septic patients yielded similar results in cell populations and outcome. CONCLUSIONS: Gene expression reveals two endotypes in patients with acute endocarditis, with different underlying pathogenetic mechanisms, response to surgery and outcome.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39133930

RESUMEN

Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift towards a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. Here, we explore the contribution of mechanical stretch as trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed in vitro to mechanical stretch, and senescence assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared to senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed notch signaling as a potential responsible for the epithelial-mesenchymal crosstalk, as blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.

3.
Eur J Sport Sci ; 24(6): 766-776, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874986

RESUMEN

A sedentary lifestyle and Olympic participation are contrary risk factors for global mortality and incidence of cancer and cardiovascular disease. Extracellular vesicle miRNAs have been described to respond to exercise. No molecular characterization of young male sedentary people versus athletes is available; so, our aim was to identify the extracellular vesicle miRNA profile of chronically trained young endurance and resistance male athletes compared to their sedentary counterparts. A descriptive case-control design was used with 16 sedentary young men, 16 Olympic male endurance athletes, and 16 Olympic male resistance athletes. Next-generation sequencing and RT-qPCR and external and internal validation were performed in order to analyze extracellular vesicle miRNA profiles. Endurance and resistance athletes had significant lower levels of miR-16-5p, miR-19a-3p, and miR-451a compared to sedentary people. Taking all together, exercise-trained miRNA profile in extracellular vesicles provides a differential signature of athletes irrespective of the type of exercise compared to sedentary people. Besides, miR-25-3p levels were specifically lower in endurance athletes which defines its role as a specific responder in this type of athletes. In silico analysis of this profile suggests a role in adaptive energy metabolism in this context that needs to be experimentally validated. Therefore, this study provides for the first time basal levels of circulating miRNA in extracellular vesicles emerge as relevant players in intertissue communication in response to chronic exercise exposure in young elite male athletes.


Asunto(s)
Atletas , Vesículas Extracelulares , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs , Conducta Sedentaria , Humanos , Masculino , MicroARNs/sangre , Vesículas Extracelulares/metabolismo , Estudios de Casos y Controles , Adulto Joven , Resistencia Física , Adolescente
4.
Eur Respir Rev ; 33(172)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38925793

RESUMEN

Acute respiratory distress syndrome (ARDS) poses a significant and widespread public health challenge. Extensive research conducted in recent decades has considerably improved our understanding of the disease pathophysiology. Nevertheless, ARDS continues to rank among the leading causes of mortality in intensive care units and its management remains a formidable task, primarily due to its remarkable heterogeneity. As a consequence, the syndrome is underdiagnosed, prognostication has important gaps and selection of the appropriate therapeutic approach is laborious. In recent years, the noncoding transcriptome has emerged as a new area of attention for researchers interested in biomarker development. Numerous studies have confirmed the potential of long noncoding RNAs (lncRNAs), transcripts with little or no coding information, as noninvasive tools for diagnosis, prognosis and prediction of the therapeutic response across a broad spectrum of ailments, including respiratory conditions. This article aims to provide a comprehensive overview of lncRNAs with specific emphasis on their role as biomarkers. We review current knowledge on the circulating lncRNAs as potential markers that can be used to enhance decision making in ARDS management. Additionally, we address the primary limitations and outline the steps that will be essential for integration of the use of lncRNAs in clinical laboratories. Our ultimate objective is to provide a framework for the implementation of lncRNAs in the management of ARDS.


Asunto(s)
Valor Predictivo de las Pruebas , ARN Largo no Codificante , Síndrome de Dificultad Respiratoria , Transcriptoma , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/fisiopatología , Pronóstico , Animales , Marcadores Genéticos , Biomarcadores/sangre , Biomarcadores/metabolismo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Perfilación de la Expresión Génica
5.
Mol Genet Genomics ; 299(1): 49, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704518

RESUMEN

The main objective of this study was to determine whether the common Y-haplogroups were be associated with the risk of developing severe COVID-19 in Spanish male. We studied 479 patients who required hospitalization due to COVID-19 and 285 population controls from the region of Asturias (northern Spain), They were genotyped for several polymorphisms that define the common European Y-haplogroups. We compared the frequencies between patients and controls aged ≤ 65 and >65 years. There were no different haplogroup frequencies between the two age groups of controls. Haplogroup R1b was less common in patients aged ≤65 years. Haplogroup I was more common in the two patient´s groups compared to controls (p = 0.02). Haplogroup R1b was significantly more frequent among hypertensive patients, without difference between the hypertensive and normotensive controls. This suggested that R1b could increase the risk for severe COVID-19 among male with pre-existing hypertension. In conclusion, we described the Y-haplogroup structure among Asturians. We found an increased risk of severe COVID-19 among haplogroup I carriers, and a significantly higher frequency of R1b among hypertensive patients. These results indicate that Y-chromosome variants could serve as markers to define the risk of developing a severe form of COVID-19.


Asunto(s)
COVID-19 , Cromosomas Humanos Y , Haplotipos , Hipertensión , SARS-CoV-2 , Humanos , Masculino , COVID-19/genética , COVID-19/epidemiología , España/epidemiología , Haplotipos/genética , Anciano , Persona de Mediana Edad , SARS-CoV-2/genética , Cromosomas Humanos Y/genética , Hipertensión/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Adulto , Femenino
6.
Immunogenetics ; 76(3): 213-217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602517

RESUMEN

There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.


Asunto(s)
COVID-19 , Inmunoglobulina G , Receptores de IgG , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/genética , COVID-19/inmunología , COVID-19/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , SARS-CoV-2/inmunología , Receptores de IgG/genética , Alotipos de Inmunoglobulina Gm/genética , Genotipo , Polimorfismo de Nucleótido Simple , Adulto , Genes de Inmunoglobulinas , Alelos
7.
Am J Respir Crit Care Med ; 208(3): 256-269, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154608

RESUMEN

Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.


Asunto(s)
COVID-19 , Enfermedades Pulmonares Intersticiales , Síndrome de Dificultad Respiratoria , Humanos , Pulmón , Células del Estroma
8.
Mol Imaging Biol ; 25(2): 413-422, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36167904

RESUMEN

PURPOSE: Clinical ventilation studies are primarily performed with computerized tomography (CT) and more often with single-photon emission Computerized tomography (SPECT) using radiolabelled aerosols, both presenting certain limitations. Here, we investigate the use of the radiofluorinated gas [18F]SF6 as a positron emission tomography (PET) ventilation marker in an animal model of impaired lung ventilation. PROCEDURES: Sprague-Dawley rats (n = 15) were randomly assigned to spontaneous ventilation (sham group), endotracheal administration of phosphate-buffered saline (PBS group), or endotracheal administration of lipopolysaccharide (LPS group). PET-[18F]SF6 images (10-min acquisition) were acquired at t = 48 h after LPS or PBS administration under mechanical ventilation. CT images were acquired after each PET session. Volumes of interest were manually delineated in the lungs on CT images, and voxel-by-voxel analysis was carried out on PET images to obtain the corresponding histograms. After the imaging sessions, lungs were harvested to conduct histological analysis. RESULTS: Ventilation studies in sham animals showed uniform distribution of [18F]SF6 and fast elimination of the radioactivity after discontinuation of the administration. For PBS- and LPS-treated rats, ventilation defects were observed on PET images in some animals, identified as regions with low presence of the radiolabelled gas. Hypoventilated areas co-localized with regions with higher x-ray attenuation than healthy lungs on the CT images, suggesting the presence of oedema and, in some cases, atelectasis. Histograms obtained from PET images showed quasi-Gaussian distributions for control animals, while PBS- and LPS-treated animals demonstrated the presence of hypoventilated voxels. Deviation of the histograms from Gaussian distribution correlated with histological score was obtained by ex vivo histological analysis. CONCLUSIONS: [18F]SF6 is an appropriate marker of regional lung ventilation and may find application in the early diagnose of acute lung disease.


Asunto(s)
Lipopolisacáridos , Respiración Artificial , Ratas , Animales , Respiración Artificial/métodos , Ratas Sprague-Dawley , Tomografía de Emisión de Positrones/métodos , Pulmón , Modelos Animales
9.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104291

RESUMEN

BACKGROUND: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit. METHODS: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings. RESULTS: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results. CONCLUSIONS: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Enfermedad Crítica , Unidades de Cuidados Intensivos
10.
Immunogenetics ; 75(2): 91-98, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36434151

RESUMEN

MDA5, encoded by the IFIH1gene, is a cytoplasmic sensor of viral RNAs that triggers interferon (IFN) antiviral responses. Common and rare IFIH1 variants have been associated with the risk of type 1 diabetes and other immune-mediated disorders, and with the outcome of viral diseases. Variants associated with reduced IFN expression would increase the risk for severe viral disease. The MDA5/IFN pathway would play a critical role in the response to SARS-CoV-2 infection mediating the extent and severity of COVID-19. Here, we genotyped a cohort of 477 patients with critical ICU COVID-19 (109 death) for three IFIH1 functional variants: rs1990760 (p.Ala946Thr), rs35337543 (splicing variant, intron 8 + 1G > C), and rs35744605 (p.Glu627Stop). The main finding of our study was a significant increased frequency of rs1990760 C-carriers in early-onset patients (< 65 years) (p = 0.01; OR = 1.64, 95%CI = 1.18-2.43). This variant was also increased in critical vs. no-ICU patients and in critical vs. asymptomatic controls. The rs35744605 C variant was associated with increased blood IL6 levels at ICU admission. The rare rs35337543 splicing variant showed a trend toward protection from early-onset critical COVID-19. In conclusion, IFIH1 variants associated with reduced gene expression and lower IFN response might contribute to develop critical COVID-19 with an age-dependent effect.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , COVID-19/genética , SARS-CoV-2 , Diabetes Mellitus Tipo 1/genética
11.
J Intensive Care ; 10(1): 55, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36567347

RESUMEN

BACKGROUND: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. METHODS: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. RESULTS: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. CONCLUSIONS: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073.

12.
Genes Immun ; 23(6): 205-208, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36088493

RESUMEN

IgG3 would play an important role in the immune adaptive response against SARS-CoV-2, and low plasma levels might increase the risk of COVID-19 severity and mortality. The IgG3 hinge sequence has a variable repeat of a 15 amino acid exon with common 4-repeats (M) and 3-repeats (S). This length IGHG3 polymorphism might affect the IgG3 effector functions. The short hinge length would reduce the IgG3 flexibility and impairs the neutralization and phagocytosis compared to larger length-isoforms. We genotyped the IGHG3 length polymorphism in patients with critical COVID-19 (N = 516; 107 death) and 152 moderate-severe but no-critical cases. Carriers of the S allele had an increased risk of critical ICU and mortality (p < 0.001, OR = 2.79, 95% CI = 1.66-4.65). This adverse effect might be explained by a less flexibility and reduced ability to induce phagocytosis or viral neutralization for the short length allele. We concluded that the IgG3 hinge length polymorphism could be a predictor of critical COVID-19 and the risk of death. This study was based on a limited number of patients from a single population, and requires validation in larger cohorts.


Asunto(s)
COVID-19 , Aminoácidos , COVID-19/genética , Exones , Humanos , Inmunoglobulina G/genética , SARS-CoV-2
13.
Mitochondrion ; 67: 1-5, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115538

RESUMEN

As a key regulator of innate immunity, mitochondrial function is essential to maintain antiviral activities. Common mitochondrial DNA variants (haplogroups) have been associated with different physiological capacities and the nrisk of developing several diseases. Haplogroup H was associated with increased survival among sepsis patients, and lower risk of progression toward AIDS in HIV infected and lower manifestation of severe manifestation of herpex virus disease. We studied 316 Spanish with critical COVID-19, and found that the 7028C (haplogroup H) was protective among patients with early-onset disease (≤65 vs > 65 years, p = 0.01), while the ancestral 16223T was a risk factor for early-onset critical COVID-19 (OR = 3.36, 95 %CI = 1.49-7.54). Our work suggested that common mitochondrial variants may serve as predictors of COVID-19 severity. Additional studies to confirm this effect from other populations are of special interest.


Asunto(s)
COVID-19 , Humanos , Haplotipos , COVID-19/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Factores de Riesgo
14.
Hum Immunol ; 83(8-9): 613-617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35777990

RESUMEN

The NF-κB signaling pathway is a key regulator of inflammation in the response to SARS-CoV-2 infection. This pathway has been implicated in the hyperinflammatory state that characterizes the severe forms of COVID-19. The genetic variation of the NF-κB components might thus explain the predisposition to critical outcomes of this viral disease. We aimed to study the role of the common NFKB1 rs28362491, NFKBIA rs696 and NFKBIZ rs3217713 variants in the risk of developing severe COVID-19 with ICU admission. A total of 470 Spanish patients requiring respiratory support in the ICU were studied (99 deceased and 371 survivors). Compared to healthy population controls (N = 300), the NFKBIA rs696 GG genotype was increased in the patients (p = 0.045; OR = 1.37). The NFKBIZ rs3217713 insertion homozygosis was associated with a significant risk of death (p = 0.02; OR = 1.76) and was also related to increased D-dimer values (p = 0.0078, OR = 1.96). This gene has been implicated in sepsis in mice and rats. Moreover, we found a trend toward lower expression of the NFKBIZ transcript in total blood from II patients. In conclusion, variants in the NF-κB genes might be associated with the risk of developing severe COVID-19, with a significant effect of the NFKBIZ gene on mortality. Our results were based on a limited number of patients and require validation in larger cohorts from other populations.


Asunto(s)
COVID-19 , FN-kappa B , Proteínas Adaptadoras Transductoras de Señales , COVID-19/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inhibidor NF-kappaB alfa/genética , FN-kappa B/genética , Subunidad p50 de NF-kappa B/genética , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Transducción de Señal
15.
J Med Virol ; 94(8): 3589-3595, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35355278

RESUMEN

Furin is a protease that plays a key role in the infection cycle of SARS-CoV-2 by cleaving the viral proteins during the virus particle assembly. In addition, Furin regulates several physiological processes related to cardio-metabolic traits. DNA variants in the FURIN gene are candidates to regulate the risk of developing these traits as well as the susceptibility to severe COVID-19. We genotyped two functional FURIN variants (rs6224/rs4702) in 428 COVID-19 patients in the intensive care unit. The association with death (N = 106) and hypertension, diabetes, and hyperlipidaemia was statistically evaluated. The risk of death was associated with age, hypertension, and hypercholesterolemia. The two FURIN alleles linked to higher expression (rs6224 T and rs4702 A) were significantly increased in the death cases (odds ratio= 1.40 and 1.43). Homozygosis for the two high expression genotypes (rs6224 TT and rs4702 AA) and for the T-A haplotype was associated with an increased risk of hypercholesterolemia. In the multiple logistic regression both, hypercholesterolemia and the TT + AA genotype were significantly associated with death. In conclusion, besides its association with hypercholesterolemia, FURIN variants might be independent risk factors for the risk of death among COVID-19 patients.


Asunto(s)
COVID-19 , Hipercolesterolemia , Hipertensión , COVID-19/genética , Furina/genética , Furina/metabolismo , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
16.
Clin Immunol ; 236: 108954, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149195

RESUMEN

Polymorphisms of Fcγ receptors have been associated with variable responses to infections. We determined the association of functional polymorphisms rs1801274 in the FCGR2A and rs396991 in the FCGR3A with COVID-19 severity. This study involved 453 patients with severe COVID-19, in which the FCGR2A rs1801274 G-allele (131-Arg) was significantly associated with death (p = 0.02, OR = 1.47). This effect was independent of age and increased IL6 and D-Dimer levels. This study suggests that the FCGR2A gene might be associated with the risk of death among COVID-19 patients. Our study has several limitations, mainly the limited number of patients and the inclusion of a single population. It is thus necessary to confirm this result in larger cohorts from different populations.


Asunto(s)
COVID-19 , Receptores de IgG , Alelos , COVID-19/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética
17.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060899

RESUMEN

Background: Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. We hypothesized that IFIH1 rs199076 variants would modulate host response and outcome after severe COVID-19. Methods: Patients admitted to an intensive care unit (ICU) with confirmed COVID-19 were prospectively studied and rs1990760 variants determined. Peripheral blood gene expression, cell populations, and immune mediators were measured. Peripheral blood mononuclear cells from healthy volunteers were exposed to an MDA5 agonist and dexamethasone ex-vivo, and changes in gene expression assessed. ICU discharge and hospital death were modeled using rs1990760 variants and dexamethasone as factors in this cohort and in-silico clinical trials. Results: About 227 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a lower expression of inflammation-related pathways, an anti-inflammatory cell profile, and lower concentrations of pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist showed an increase in IL6 expression after dexamethasone treatment. All patients with the TT variant not treated with steroids survived their ICU stay (hazard ratio [HR]: 2.49, 95% confidence interval [CI]: 1.29-4.79). Patients with a TT variant treated with dexamethasone showed an increased hospital mortality (HR: 2.19, 95% CI: 1.01-4.87) and serum IL-6. In-silico clinical trials supported these findings. Conclusions: COVID-19 patients with the IFIH1 rs1990760 TT variant show an attenuated inflammatory response and better outcomes. Dexamethasone may reverse this anti-inflammatory phenotype. Funding: Centro de Investigación Biomédica en Red (CB17/06/00021), Instituto de Salud Carlos III (PI19/00184 and PI20/01360), and Fundació La Marató de TV3 (413/C/2021).


Patients with severe COVID-19 often need mechanical ventilation to help them breathe and other types of intensive care. The outcome for many of these patients depends on how their immune system reacts to the infection. If the inflammatory response triggered by the immune system is too strong, this can cause further harm to the patient. One gene that plays an important role in inflammation is IFIH1 which encodes a protein that helps the body to recognize viruses. There are multiple versions of this gene which each produce a slightly different protein. It is possible that this variation impacts how the immune system responds to the virus that causes COVID-19. To investigate, Amado-Rodríguez, Salgado del Riego et al. analyzed the IFIH1 gene in 227 patients admitted to an intensive care unit in Spain for severe COVID-19 between March and December 2020. They found that patients with a specific version of the gene called TT experienced less inflammation and were more likely to survive the infection. Physicians typically treat patients with moderate to severe COVID-19 with corticosteroid drugs that reduce the inflammatory response. However, Amado-Rodríguez, Salgado del Riego et al. found that patients with the TT version of the IFIH1 gene were at greater risk of dying if they received corticosteroids. The team then applied the distribution of IFIH1 variants among different ethnic ancestries to data from a previous clinical trial, and simulated the effects of corticosteroid treatment. This 'mock' clinical trial supported their findings from the patient-derived data, which were also validated by laboratory experiments on immune cells from individuals with the TT gene. The work by Amado-Rodríguez, Salgado del Riego et al. suggests that while corticosteroids benefit some patients, they may cause harm to others. However, a real-world clinical trial is needed to determine whether patients with the TT version of the IFIH1 gene would do better without steroids.


Asunto(s)
COVID-19/genética , Inflamación/genética , Helicasa Inducida por Interferón IFIH1/genética , SARS-CoV-2/patogenicidad , Anciano , COVID-19/complicaciones , Enfermedad Crítica , ARN Helicasas DEAD-box/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad
18.
Eur Respir J ; 60(1)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34887328

RESUMEN

BACKGROUND: Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumours have not been explored. METHODS: To characterise the influence of mechanical ventilation on the behaviour of lung tumours, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechanodependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of nonventilated patients. RESULTS: Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in pro-protein convertase subtilisin/kexin type 9 (PCSK9) and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harbouring melanoma implants increased brain and kidney metastases 2 weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo. In patients, mechanical ventilation increased PCSK9 abundance in lung tumours and the incidence of metastasis, thus decreasing survival. CONCLUSIONS: Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.


Asunto(s)
Adenocarcinoma , Colesterol , Neoplasias Pulmonares , Melanoma , Proproteína Convertasa 9 , Respiración Artificial , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Colesterol/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Respiración Artificial/efectos adversos
19.
Curr Res Virol Sci ; 2: 100016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34870250

RESUMEN

The interferon induced transmembrane-protein 3 (IFITM3) plays an important role in the defence against viral infection. IFITM3 gene variants have been linked to differences in expression and associated with the risk of severe influenza by some authors. More recently, these variants have been associated with the risk of COVID-19 after SARS-CoV-2 infection. We determined the effect of two common IFITM3 polymorphisms (rs34481144 â€‹C/T and rs12252 A/G) on the risk of hospitalization due to COVID-19 by comparing 484 patients (152 required support in thr intensive care unit, ICU) and 182 age and sex matched controls (no disease symptoms). We found significantly higher frequencies of rs34481144 â€‹T and rs12252 â€‹G carriers among the patients (OR â€‹= â€‹2.02 and OR â€‹= â€‹1.51, respectively). None of the two variants were associated with ICU-admission or death. We found a significantly higher frequency of rs34481144 CC â€‹+ â€‹rs12252 AA genotype carriers among the controls, suggesting a protective effect (p = 0.001, OR = 0.56, 95%CI = 0.40-0.80). Moreover, haplotype rs34481144 â€‹C - rs12252 A was significantly increased in the controls (p â€‹= â€‹0.008, OR â€‹= â€‹0.71, 95%CI â€‹= â€‹0.55-0.91). Our results showed a significant effect of the IFITM3 variants in the risk for hospitalization after SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...