RESUMEN
Homogenous enantioselective catalysis is nowadays the cornerstone in the manufacturing of enantiopure substances, but its technological implementation suffers from well-known impediments like the lack of endurable catalysts exhibiting long-term stability. The catalytically active intermetallic compound Palladium-Gallium (PdGa), conserving innate bulk chirality on its surfaces, represent a promising system to study asymmetric chemical reactions by heterogeneous catalysis, with prospective relevance for industrial processes. Here, this work investigates the adsorption of 10,10'-dibromo-9,9'-bianthracene (DBBA) on the PdGa:A( 1 ¯ 1 ¯ 1 ¯ $\bar{1}\bar{1}\bar{1}$ ) Pd3-terminated surface by means of scanning tunneling microscopy (STM) and spectroscopy (STS). A highly enantioselective adsorption of the molecule evolving into a near 100% enantiomeric excess below room temperature is observed. This exceptionally high enantiomeric excess is attributed to temperature activated conversion of the S to the R chiral conformer. Tip-induced bond cleavage of the R conformer shows a very high regioselectivity of the DBBA debromination. The experimental results are interpreted by density functional theory atomistic simulations. This work extends the knowledge of chirality transfer onto the enantioselective adsorption of non-planar molecules and manifests the ensemble effect of PdGa surfaces resulting in robust regioselective debromination.
RESUMEN
In the search for novel materials for vacuum electron sources, multi-alkali antimonides and in particular sodium-potassium-antimonides have been recently regarded as especially promising due to their favorable electronic and optical properties. In the framework of density-functional theory and many-body perturbation theory, we investigate the electronic structure and the dielectric response of two representative members of this family, namely Na2KSb and NaK2Sb. We find that both materials have a direct gap, which is on the order of 1.5 eV in Na2KSb and 1.0 eV in NaK2Sb. In either system, valence and conduction bands are dominated by Sb states withp- ands-character, respectively. The imaginary part of the dielectric function, computed upon explicit inclusion of electron-hole interactions to characterize the optical response of the materials, exhibits maxima starting from the near-infrared region, extending up to the visible and the ultraviolet band. With our analysis, we clarify that the lowest-energy excitations are non-excitonic in nature and that their binding energy is on the order of 100 meV. Our results confirm the potential of Na2KSb and NaK2Sb as photoemissive materials for vacuum electron sources, photomultipliers, and imaging devices.
RESUMEN
The development of novel photocathode materials for ultra-bright electron sources demands efficient and cost-effective strategies that provide insight and understanding of the intrinsic material properties given the constraints of growth and operational conditions. To address this question, we propose a viable way to establish correlations between calculated and measured data on core electronic states of Cs-K-Sb materials. To do so, we combine first-principles calculations based on all-electron density-functional theory on the three alkali antimonides Cs3Sb, Cs2KSb, and CsK2Sb with x-ray photoemission spectroscopy (XPS) on Cs-K-Sb photocathode samples. Within the GW approximation of many-body perturbation theory, we obtain quantitative predictions of the band gaps of these materials, which range from 0.57 eV in Cs2KSb to 1.62 eV in CsK2Sb and manifest direct or indirect character depending on the relative potassium content. Our theoretical electronic-structure analysis also reveals that the core states of these systems have binding energies that depend only on the atomic species and their crystallographic sites, with largest shifts of the order of 2 eV and 0.5 eV associated to K 2p and Sb 3d states, respectively. This information can be correlated to the maxima in the XPS survey spectra, where such peaks are clearly visible. In this way, core-level shifts can be used as fingerprints to identify specific compositions of Cs-K-Sb materials and their relation with the measured values of quantum efficiency. Our results represent the first step towards establishing a robust connection between the experimental preparation and characterization of photocathodes, the ab initio prediction of their electronic structure, and the modeling of emission and beam formation processes.