Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Dermatol ; 33(5): 495-505, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297925

RESUMEN

Convolutional neural networks are a type of deep learning algorithm. They are mostly applied in visual recognition and can be used for the identification of melanomas. Multiple studies have evaluated the performance of convolutional neural networks, and most algorithms match or even surpass the accuracy of dermatologists. However, only 23.8% of dermatologists have good or excellent knowledge of the topic. We believe that the lack of knowledge physicians experience regarding artificial intelligence is an obstacle to its clinical implementation. We describe how a convolutional neural network differentiates a benign from a malignant lesion. We systematically searched the Web of Science, Medline (PubMed), and The Cochrane Library on the 9th February, 2022. We focused on articles describing the role and use of artificial intelligence in melanoma recognition between 2017 and 2022, using the following MeSH terms: "melanoma," "diagnosis," and "artificial intelligence". Traditional machine learning algorithms comprise different parts which must preprocess, segment, extract features and classify the lesion into benign or malignant. Deep learning algorithms can perform these steps simultaneously, which significantly enhances efficiency. Convolutional neural networks include a convolutional layer, a pooling layer, and a fully connected layer. Convolutional and pooling layers extract features from the lesion and reduce computational power, whereas fully connected layers classify the image into two or more categories. Additionally, we suggest that further studies should be performed to accelerate the clinical implementation of artificial intelligence, to create comprehensive datasets and to generate explainable algorithms.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/diagnóstico , Melanoma/patología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Inteligencia Artificial , Dermatólogos , Dermoscopía/métodos , Redes Neurales de la Computación , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...