Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 95(suppl 1): e20220914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585970

RESUMEN

Zinc (Zn) is an essential micronutrient involved in the physiology of nervous system and pain modulation. There is little evidence for the role of nutritional Zn alternations to the onset and progression of neuropathic (NP) and inflammatory pain. The study investigated the effects of a zinc restricted diet on the development of pain. Weaned mice were submitted to a regular (38 mg/kg of Zn) or Zn deficient (11 mg/kg of Zn) diets for four weeks, pain responses evaluated (mechanical, cold and heat allodynia; formalin- and carrageenan-induced inflammatory hypernociception), plasma and tissues collected for biochemical and metabolomic analysis. Zn deficient diet inhibited animal growth (37%) and changed mice sensitivity pattern, inducing an intense allodynia evoked by mechanical, cold and heat stimulus for four weeks. The inflammatory pain behavior of formalin test was drastically reduced or absent when challenged by an inflammatory stimulus. Zn restriction also reduce plasma TNF, increase neuronal activation, oxidative stress, indicating a disruption of the immune response. Liver metabolomic analyses suggest a downregulation of lipid metabolism of arachidonic acid. Zn restriction since weaned disrupts pain signaling considerably and reduce inflammatory pain. Zn could be considered a predisposing factor for the onset of chronic pain such as painful neuropathies.


Asunto(s)
Hiperalgesia , Desnutrición , Animales , Ratones , Nocicepción , Dolor , Hígado , Zinc/farmacología
3.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395315

RESUMEN

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Asunto(s)
Lepra , Mycobacterium leprae , Adenosina Trifosfato , Colesterol , Humanos , Lípidos
4.
Tuberculosis (Edinb) ; 126: 102043, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33370646

RESUMEN

Although treatable with antibiotics, tuberculosis is a leading cause of death. Mycobacterium tuberculosis antibiotic resistance is becoming increasingly common and disease control is challenging. Conventional drug susceptibility testing takes weeks to produce results, and treatment is often initiated empirically. Therefore, new methods to determine drug susceptibility profiles are urgent. Here, we used mass-spectrometry-based metabolomics to characterize the metabolic landscape of drug-susceptible (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tuberculosis. Direct infusion mass spectrometry data showed that DS, MDR, and XDR strains have distinct metabolic profiles, which can be used to predict drug susceptibility and resistance. This was later confirmed by Ultra-High-Performance Liquid Chromatography and High-Resolution Mass Spectrometry, where we found that levels of ions presumptively identified as isoleucine, proline, hercynine, betaine, and pantothenic acid varied significantly between strains with different drug susceptibility profiles. We then confirmed the identification of proline and isoleucine and determined their absolute concentrations in bacterial extracts, and found significantly higher levels of these amino acids in DS strains, as compared to drug-resistant strains (combined MDR and XDR strains). Our results advance the current understanding of the effect of drug resistance on bacterial metabolism and open avenues for the detection of drug resistance biomarkers.


Asunto(s)
Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/metabolismo , Metaboloma/fisiología , Metabolómica/métodos , Mycobacterium tuberculosis/metabolismo , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación
5.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24552180

RESUMEN

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Asunto(s)
Colesterol/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Viabilidad Microbiana , Mycobacterium leprae/fisiología , Fagosomas/microbiología , Animales , Western Blotting , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Lepra/tratamiento farmacológico , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Fagosomas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de LDL/biosíntesis , Receptores de LDL/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
6.
PLoS Negl Trop Dis ; 7(8): e2381, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967366

RESUMEN

Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT) were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA) metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.


Asunto(s)
Antiinflamatorios/metabolismo , Ácidos Grasos Insaturados/metabolismo , Interacciones Huésped-Parásitos , Lepra/inmunología , Lepra/patología , Metaboloma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasma/química , Piel/química , Piel/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...