Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 6581, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313054

RESUMEN

To better understand the molecular control of leaf senescence, we examined transcriptome changes during seasonal leaf senescence in Populus trichocarpa Nisqually-1, the Populus reference genome, growing in its natural habitat. Using monthly (from May to October) transcriptomes for three years (2009, 2015, and 2016), we identified 17,974 differentially expressed genes (DEGs; false discovery rate <0.05; log-fold change cutoff = 0) from 36,007 expressed Populus gene models. A total of 14,415 DEGs were directly related to transitions between four major developmental phases - growth, senescence initiation, reorganization, and senescence termination. These DEGs were significantly (p < 0.05) enriched in 279 gene ontology (GO) terms, including those related to photosynthesis, metabolic process, catalytic activity, protein phosphorylation, kinase activity, pollination, and transport. Also, there were 881 differentially expressed transcription factor (TF) genes from 54 TF families, notably bHLH, MYB, ERF, MYB-related, NAC, and WRKY. We also examined 28 DEGs known as alternative splicing (AS) factors that regulate AS process, and found evidence for a reduced level of AS activity during leaf senescence. Furthermore, we were able to identify a number of promoter sequence motifs associated with leaf senescence. This work provides a comprehensive resource for identification of genes involved in seasonal leaf senescence in trees, and informs efforts to explore the conservation and divergence of molecular mechanisms underlying leaf senescence between annual and perennial species.


Asunto(s)
Envejecimiento/genética , Hojas de la Planta/genética , Populus/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Fotosíntesis/genética , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Factores de Transcripción/genética
2.
Nucleic Acids Res ; 45(D1): D1029-D1039, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27799469

RESUMEN

Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Plantas/genética , Plantas/metabolismo , Motor de Búsqueda , Genómica/métodos , Redes y Vías Metabólicas , Transducción de Señal , Biología de Sistemas/métodos , Interfaz Usuario-Computador , Navegador Web
3.
Nucleic Acids Res ; 44(D1): D1133-40, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26553803

RESUMEN

Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Plantas/metabolismo , Expresión Génica , Variación Genética , Genómica , Internet , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Plantas/genética
4.
New Phytol ; 206(4): 1406-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25353719

RESUMEN

As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages, and compared these with transcriptomes of diverse vegetative tissues, including leaves, roots, and stems. A subset of 4807 genes (13% of protein-coding genes) were differentially expressed between floral buds of either stage and vegetative tissues. A similar proportion of genes were differentially expressed among all tissues. A total of 479 genes were differentially expressed between early and late stages of floral development. Gene function enrichment identified 158 gene ontology classes that were overrepresented in floral tissues, including 'pollen development' and 'aromatic compound biosynthetic process'. At least 40 floral-dominant genes lacked functional annotations and thus may be novel floral transcripts. We analyzed several genes and gene families in depth, including 49 putative biomarkers of floral development, the MADS-box transcription factors, 'S-domain'-receptor-like kinases, and selected gene family members with phosphatidylethanolamine-binding protein domains. Expanded MADS-box gene subfamilies in Eucalyptus grandis included SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), SEPALLATA (SEP) and SHORT VEGETATIVE PHASE (SVP) Arabidopsis thaliana homologs. These data provide a rich resource for functional and evolutionary analysis of genes controlling eucalypt floral development, and new tools for breeding and biotechnology.


Asunto(s)
Eucalyptus/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN
5.
Nature ; 510(7505): 356-62, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24919147

RESUMEN

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Asunto(s)
Eucalyptus/genética , Genoma de Planta , Eucalyptus/clasificación , Evolución Molecular , Variación Genética , Endogamia , Filogenia
6.
Nucleic Acids Res ; 42(Database issue): D1193-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217918

RESUMEN

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Genómica , Productos Agrícolas/genética , Variación Genética , Internet , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Plantas/genética , Plantas/metabolismo
7.
Rice (N Y) ; 6(1): 15, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24280345

RESUMEN

BACKGROUND: Functional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations are necessary to understand the physiology, development and adaptation of a plant and its interaction with the environment. RESULTS: RiceCyc is a metabolic pathway networks database for rice. It is a snapshot of the substrates, metabolites, enzymes, reactions and pathways of primary and intermediary metabolism in rice. RiceCyc version 3.3 features 316 pathways and 6,643 peptide-coding genes mapped to 2,103 enzyme-catalyzed and 87 protein-mediated transport reactions. The initial functional annotations of rice genes with InterPro, Gene Ontology, MetaCyc, and Enzyme Commission (EC) numbers were enriched with annotations provided by KEGG and Gramene databases. The pathway inferences and the network diagrams were first predicted based on MetaCyc reference networks and plant pathways from the Plant Metabolic Network, using the Pathologic module of Pathway Tools. This was enriched by manually adding metabolic pathways and gene functions specifically reported for rice. The RiceCyc database is hierarchically browsable from pathway diagrams to the associated genes, metabolites and chemical structures. Through the integrated tool OMICs Viewer, users can upload transcriptomic, proteomic and metabolomic data to visualize expression patterns in a virtual cell. RiceCyc, along with additional species-specific pathway databases hosted in the Gramene project, facilitates comparative pathway analysis. CONCLUSIONS: Here we describe the RiceCyc network development and discuss its contribution to rice genome annotations. As a case study to demonstrate the use of RiceCyc network as a discovery environment we carried out an integrated bioinformatic analysis of rice metabolic genes that are differentially regulated under diurnal photoperiod and biotic stress treatments. The analysis of publicly available rice transcriptome datasets led to the hypothesis that the complete tryptophan biosynthesis and its dependent metabolic pathways including serotonin biosynthesis are induced by taxonomically diverse pathogens while also being under diurnal regulation. The RiceCyc database is available online for free access at http://www.gramene.org/pathway/.

8.
Int J Parasitol ; 43(1): 51-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23207063

RESUMEN

Allelic variation at the Cu-Zn superoxide dismutase (SOD1) locus has been shown to be associated with resistance of the snail, Biomphalaria glabrata, to infection by the trematode parasite, Schistosoma mansoni. SOD1 catalyses the production of hydrogen peroxide, a known cytotoxic component of the oxidative burst used in defence against pathogens. In our laboratory population of B. glabrata, the most resistant allele at SOD1 is over-expressed relative to the other two alleles. Because hydrogen peroxide also causes oxidative stress on host tissues, we hypothesised that over-expression of SOD1 might be compensated by epistatic interactions with other loci involved in oxidation-reduction (redox) pathways. Catalase, peroxiredoxins and glutathione peroxidases all degrade hydrogen peroxide. We tested whether alleles at each of these loci were in linkage disequilibrium with SOD1 in our population, as might be expected given strong epistatic selection. We found that SOD1, catalase (CAT) and a peroxiredoxin locus (PRX4) are in strong linkage disequilibrium in our population. We also found that these loci are tightly linked, within 1-2cM of each other, which explains the high linkage disequilibrium. This result raises the possibility that there is a linked cluster of redox genes, and perhaps other defence-relevant genes, in the B. glabrata genome. Whether epistatic interactions for fitness actually exist among these loci still needs to be tested. However the close physical linkage among SOD1, PRX4 and CAT, and subsequent high disequilibrium, makes such interactions a plausible hypothesis.


Asunto(s)
Biomphalaria/enzimología , Catalasa/genética , Redes y Vías Metabólicas/genética , Peroxirredoxinas/genética , Estallido Respiratorio , Superóxido Dismutasa/genética , Animales , Biomphalaria/genética , Catalasa/metabolismo , Desequilibrio de Ligamiento , Datos de Secuencia Molecular , Familia de Multigenes , Peroxirredoxinas/metabolismo , Análisis de Secuencia de ADN , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...