Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
PLoS One ; 17(3): e0265692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316283

RESUMEN

Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.


Asunto(s)
Leishmania donovani , Profilinas , Actinas/metabolismo , Ciclo Celular , Leishmania donovani/metabolismo , Profilinas/genética , Profilinas/metabolismo , ARN Mensajero/metabolismo , Fase S , Huso Acromático/metabolismo
3.
Front Cell Dev Biol ; 8: 587685, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163497

RESUMEN

Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.

4.
Mol Biochem Parasitol ; 238: 111280, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32407750

RESUMEN

Profilins are the key regulators of actin dynamics in all eukaryotic cells. However, little information is available on their biochemical properties and functions in kinetoplastids, such as Trypanosoma and Leishmania. We show here that Leishmania parasites express only one homolog of profilin (LdPfn), which catalyzes nucleotide exchange on G-actin and promotes actin polymerization at its low concentrations. However, at high concentrations, it strongly inhibits the polymerization process by sequestering actin monomers. We further demonstrate that LdPfn binds to actin in Leishmania promastigotes, by both immunofluorescence microscopy and IgG affinity chromatography. Further, we reveal that this protein besides binding to poly-null-proline motifs, also binds more efficiently to PI(3,5)P2, which is found on early or late endosomes or lysosomes, than to PI(4,5)P2 and PI(3,4,5)P3. Additionally, we show that heterozygous mutants of profilin display significantly slower growth and intracellular vesicle trafficking activity, which is reversed on episomal gene complementation. Together, these findings suggest that profilin regulates intracellular vesicle trafficking in Leishmania perhaps through its binding to polyphosphoinositides.


Asunto(s)
Actinas/genética , Leishmania donovani/genética , Fosfatos de Fosfatidilinositol/metabolismo , Profilinas/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/genética , Actinas/metabolismo , Animales , Transporte Biológico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Prueba de Complementación Genética , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Leishmania donovani/metabolismo , Mutación , Polimerizacion , Profilinas/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Transportadoras/metabolismo
5.
PLoS One ; 15(4): e0232116, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32343719

RESUMEN

Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.


Asunto(s)
Flagelos/metabolismo , Leishmania donovani/fisiología , Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Ciclo Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/metabolismo , Miosinas/genética , Dominios Proteicos , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo
6.
Nat Biotechnol ; 28(2): 149-56, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20118918

RESUMEN

We introduce a rational approach for associating genes with plant traits by combined use of a genome-scale functional network and targeted reverse genetic screening. We present a probabilistic network (AraNet) of functional associations among 19,647 (73%) genes of the reference flowering plant Arabidopsis thaliana. AraNet associations are predictive for diverse biological pathways, and outperform predictions derived only from literature-based protein interactions, achieving 21% precision for 55% of genes. AraNet prioritizes genes for limited-scale functional screening, resulting in a hit-rate tenfold greater than screens of random insertional mutants, when applied to early seedling development as a test case. By interrogating network neighborhoods, we identify AT1G80710 (now DROUGHT SENSITIVE 1; DRS1) and AT3G05090 (now LATERAL ROOT STIMULATOR 1; LRS1) as regulators of drought sensitivity and lateral root development, respectively. AraNet (http://www.functionalnet.org/aranet/) provides a resource for plant gene function identification and genetic dissection of plant traits.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mapeo Cromosómico , Genoma de Planta/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...