Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 156(5): 1714-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25751638

RESUMEN

Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.


Asunto(s)
Adiposidad , Encéfalo/metabolismo , Metabolismo Energético/genética , Conducta Alimentaria/fisiología , Ghrelina/metabolismo , Obesidad/genética , Receptores de Ghrelina/metabolismo , Taquicininas/genética , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Obesidad/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Ratas , Taquicininas/metabolismo , Taquicininas/farmacología
2.
Gut ; 63(8): 1238-46, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24107591

RESUMEN

OBJECTIVE: Surgical interventions that prevent nutrient exposure to the duodenum are among the most successful treatments for obesity and diabetes. However, these interventions are highly invasive, irreversible and often carry significant risk. The duodenal-endoluminal sleeve (DES) is a flexible tube that acts as a barrier to nutrient-tissue interaction along the duodenum. We implanted this device in Zucker Diabetic Fatty (ZDF) rats to gain greater understanding of duodenal nutrient exclusion on glucose homeostasis. DESIGN: ZDF rats were randomised to four groups: Naive, sham ad libitum, sham pair-fed, and DES implanted. Food intake, body weight (BW) and body composition were measured for 28 days postoperatively. Glucose, lipid and bile acid metabolism were evaluated, as well as histological assessment of the upper intestine. RESULTS: DES implantation induced a sustained decrease in BW throughout the study that was matched by pair-fed sham animals. Decreased BW resulted from loss of fat, but not lean mass. DES rats were also found to be more glucose tolerant than either ad libitum-fed or pair-fed sham controls, suggesting fat mass independent metabolic benefits. DES also reduced circulating triglyceride and glycerol levels while increasing circulating bile acids. Interestingly, DES stimulated a considerable increase in villus length throughout the upper intestine, which may contribute to metabolic improvements. CONCLUSIONS: Our preclinical results validate DES as a promising therapeutic approach to diabetes and obesity, which offers reversibility, low risk, low invasiveness and triple benefits including fat mass loss, glucose and lipid metabolism improvement which mechanistically may involve increased villus growth in the upper gut.


Asunto(s)
Glucemia/metabolismo , Duodeno/fisiología , Absorción Intestinal , Síndrome Metabólico/terapia , Prótesis e Implantes , Animales , Ácidos y Sales Biliares/sangre , Composición Corporal , Peso Corporal , Diabetes Mellitus Experimental/terapia , Duodeno/patología , Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Glicerol/sangre , Homeostasis , Íleon/patología , Yeyuno/patología , Masculino , Obesidad/terapia , Distribución Aleatoria , Ratas , Ratas Zucker , Triglicéridos/sangre
3.
Diabetes ; 63(2): 505-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24186863

RESUMEN

Several bariatric operations are currently used to treat obesity and obesity-related comorbidities. These vary in efficacy, but most are more effective than current pharmaceutical treatments. Roux-en-Y gastric bypass (RYGB) produces substantial body weight (BW) loss and enhanced glucose tolerance, and is associated with increased secretion of the gut hormone glucagon-like peptide 1 (GLP-1). Given the success of GLP-1-based agents in lowering blood glucose levels and BW, we hypothesized that an individual sensitivity to GLP-1 receptor agonism could predict metabolic benefits of surgeries associated with increased GLP-1 secretion. One hundred ninety-seven high-fat diet-induced obese male Long-Evans rats were monitored for BW loss during exendin-4 (Ex4) administration. Stable populations of responders and nonresponders were identified based on Ex4-induced BW loss and GLP-1-induced improvements in glucose tolerance. Subpopulations of Ex4 extreme responders and nonresponders underwent RYGB surgery. After RYGB, responders and nonresponders showed similar BW loss compared with sham, but nonresponders retained impaired glucose tolerance. These data indicate that the GLP-1 response tests may predict some but not all of the improvements observed after RYGB. These findings present an opportunity to optimize the use of bariatric surgery based on an improved understanding of GLP-1 biology and suggest an opportunity for a more personalized therapeutic approach to the metabolic syndrome.


Asunto(s)
Derivación Gástrica , Prueba de Tolerancia a la Glucosa , Receptores de Glucagón/metabolismo , Animales , Grasas de la Dieta/efectos adversos , Ingestión de Alimentos , Exenatida , Regulación de la Expresión Génica/fisiología , Receptor del Péptido 1 Similar al Glucagón , Masculino , Obesidad , Péptidos/farmacología , Ratas , Ratas Long-Evans , Receptores de Glucagón/agonistas , Receptores de Glucagón/genética , Ponzoñas/farmacología , Pérdida de Peso
4.
Diabetes ; 62(9): 3261-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23775764

RESUMEN

Bariatric procedures vary in efficacy, but overall are more effective than behavioral and pharmaceutical treatment. Roux-en-Y gastric bypass causes increased secretion of glucagon-like peptide 1 (GLP-1) and reduces body weight (BW) more than adjustable gastric banding (AGB), which does not trigger increased GLP-1 secretion. Since GLP-1-based drugs consistently reduce BW, we hypothesized that GLP-1 receptor (GLP-1R) agonists would augment the effects of AGB. Male Long-Evans rats with diet-induced obesity received AGB implantation or sham surgery. GLP-1R agonism, cannabinoid receptor-1 (CB1-R) antagonism, or vehicle was combined with inflation to evaluate interaction between AGB and pharmacological treatments. GLP1-R agonism reduced BW in both sham and AGB rats (left uninflated) compared with vehicle-treated animals. Subsequent band inflation was ineffective in vehicle-treated rats but enhanced weight loss stimulated by GLP1-R agonism. In contrast, there was no additional BW loss when CB1-R antagonism was given with AGB. We found band inflation to trigger neural activation in areas of the nucleus of the solitary tract known to be targeted by GLP-1R agonism, offering a potential mechanism for the interaction. These data show that GLP-1R agonism, but not CB1-R antagonism, improves weight loss achieved by AGB and suggest an opportunity to optimize bariatric surgery with adjunctive pharmacotherapy.


Asunto(s)
Obesidad/tratamiento farmacológico , Obesidad/cirugía , Receptores de Glucagón/agonistas , Animales , Composición Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Exenatida , Derivación Gástrica , Gastroplastia , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Inmunohistoquímica , Masculino , Obesidad/etiología , Obesidad/metabolismo , Péptidos/uso terapéutico , Ratas , Ratas Long-Evans , Receptores de Cannabinoides/metabolismo , Ponzoñas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA