Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Crit Care Explor ; 5(7): e0943, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37396931

RESUMEN

Self-fulfilling prophecy bias occurs when a perceived prognosis leads to treatment decisions that inherently modify outcomes of a patient, and thus, overinflate the prediction performance of prognostic methods. The goal of this series of systematic reviews is to characterize the extent to which neuroprognostic studies account for the potential impact of self-fulfilling prophecy bias in their methodology by assessing their adequacy of disclosing factors relevant to this bias. Methods: Studies evaluating the prediction performance of neuroprognostic tools in cardiac arrest, malignant ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, and spontaneous intracerebral hemorrhage will be identified through PubMed, Cochrane, and Embase database searches. Two reviewers blinded to each other's assessment will perform screening and data extraction of included studies using Distiller SR and following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We will abstract data pertinent to the methodology of the studies relevant to self-fulfilling prophecy bias. Results: We will conduct a descriptive analysis of the data. We will summarize the reporting of mortality according to timing and mode of death, rates of exposure to withdrawal of life-sustaining therapy, reasoning behind limitations of supportive care, systematic use of standardized neuroprognostication algorithms and whether the tool being investigated is part of such assessments, and blinding of treatment team to results of neuroprognostic test being evaluated. CONCLUSIONS: We will identify if neuroprognostic studies have been transparent in their methodology to factors that affect the self-fulfilling prophecy bias. Our results will serve as the foundation for standardization of neuroprognostic study methodologies by refining the quality of the data derived from such studies.

2.
J Neurosci Res ; 92(9): 1091-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24823792

RESUMEN

Although many approaches have been tried in the attempt to reduce the devastating impact of stroke, tissue plasminogen activator for thromboembolic stroke is the only proved, effective acute stroke treatment to date. Vasopressin, an acute-phase reactant, is released after brain injury and is partially responsible for the subsequent inflammatory response via activation of divergent pathways. Recently there has been increasing interest in vasopressin because it is implicated in inflammation, cerebral edema, increased intracerebral pressure, and cerebral ion and neurotransmitter dysfunctions after cerebral ischemia. Additionally, copeptin, a byproduct of vasopressin production, may serve as a promising independent marker of tissue damage and prognosis after stroke, thereby corroborating the role of vasopressin in acute brain injury. Thus, vasopressin antagonists have a potential role in early stroke intervention, an effect thought to be mediated via interactions with aquaporin receptors, specifically aquaporin-4. Despite some ambiguity, vasopressin V1a receptor antagonism has been consistently associated with attenuated secondary brain injury and edema in experimental stroke models. The role of the vasopressin V2 receptor remains unclear, but perhaps it is involved in a positive feedback loop for vasopressin expression. Despite the encouraging initial findings we report here, future research is required to characterize further the utility of vasopressin antagonists in treatment of stroke.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Hemostáticos/uso terapéutico , Accidente Cerebrovascular/complicaciones , Vasopresinas/uso terapéutico , Humanos
3.
Acta Neurochir Suppl ; 113: 59-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22116425

RESUMEN

Acetazolamide (AZA), used in treatment of early or infantile hydrocephalus, is effective in some cases, while its effect on the choroid plexus (CP) remains ill-defined. The drug reversibly inhibits aquaporin-4 (AQP4), the most ubiquitous "water pore" in the brain, and perhaps modulation of AQP1 (located apically on CP cells) by AZA may reduce cerebrospinal fluid (CSF) production. We sought to elucidate the effect of AZA on AQP1 and fluid flow in CP cell cultures.CP tissue culture from 10-day Sprague-Dawley rats and a TRCSF-B cell line were grown on Transwell permeable supports and treated with 100 µM AZA. Fluid assays to assess direction and extent of fluid flow, and AQP1 expression patterns by immunoblot, Immuncytochemistry (ICC), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were performed.Immunoblots and ICC analyses showed a decrease in AQP1 protein shortly after AZA treatment (lowest at 12 h), with transient AQP1 reduction mediated by mRNA expression (lowest at 6 h). Transwell fluid assays indicated a fluid shift at 2 h, before significant changes in AQP1 mRNA or protein levels.Timing of AZA effect on AQP1 suggests the drug alters protein transcription, while affecting fluid flow by a concomitant method. It is plausible that other mechanisms account for these phenomena, as the processes may occur independently.


Asunto(s)
Acetazolamida/farmacología , Acuaporina 1/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Plexo Coroideo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Animales Recién Nacidos , Permeabilidad Capilar/efectos de los fármacos , Plexo Coroideo/metabolismo , Dextranos , Hidrodinámica , Técnicas de Cultivo de Órganos , ARN Mensajero/metabolismo , Ratas , Rodaminas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...