RESUMEN
BACKGROUND: Bovine tuberculosis (bTB) is a chronic disease caused by members of the Mycobacterium tuberculosis complex (MTBC) that ultimately leads to the development of progressive granulomatous lesions. Although the disease is widespread, especially in crossbred cattle in Ethiopia, routine investigations and surveillance are lacking. Thus, the aim of this study was to determine the prevalence, associated risk factors, and species of mycobacteria causing bTB in slaughtered cattle at four slaughterhouses in Central Ethiopia. METHODS: Postmortem examination of 7,640 cattle was conducted using a cross-sectional slaughterhouse survey. A total of 388 tuberculous-like lesions (TBLs) were collected from 173 animals and cultured. Six target genes were used to differentiate mycobacterial species using multiplex real-time PCR (mRT-PCR). Multivariate logistic regression analyses and related odds ratios (ORs) were used to gauge the strength of the associations between risk factors, TBL incidence and culture growth. RESULTS: The prevalence of TBL was 2.3% (95% CI = 2.0-2.6). Logistic regression analysis indicated an increased risk of TBL in crossbred cattle (OR = 11.8, 95% CI: 6.4, 21.2, p < 0.001). Animals slaughtered at Adama (OR = 3.2, 95% CI: 1.2, 7.3, p = 0.009) or Burayu (OR = 5.8, 95% CI: 3.9, 8.9, p < 0.001) had a greater risk of TBL than those slaughtered at Sululta. There were significantly more TBL-positive lesions in the lungs and lymph nodes related to the lung (OR = 7.1; 95% CI: 2.7, 24.5, p < 0.001) and the head lymph node (OR = 5.6; 95% CI: 1.8, 21.7; p = 0.006) compared to gut associated lymph nodes. Among the 173 TBL-positive animals, 36% (95% CI = 28.8, 43.2), and among the 388 TBL-positive tissues, 24.2% (95% CI = 20, 29) were culture and mRT-PCR positive. All the culture-generated isolates were positive for M. bovis in mRT-PCR. Among them, two animals had mixed infections including one zebu cattle tested positive for both M. caprae and M. bovis, and a crossbred cow tested positive for both M. tuberculosis and M. bovis in mRT-PCR. This suggests persistent transmission within the cattle population, posing a substantial public health threat. CONCLUSION: This study revealed an eleven-fold greater risk of bTB-related lesions in crossbred cattle compared to local zebu cattle. This finding highlights the necessity for targeted interventions, continuous vigilance, and thorough carcass inspection to mitigate public health risks.
Asunto(s)
Mataderos , Reacción en Cadena de la Polimerasa Multiplex , Reacción en Cadena en Tiempo Real de la Polimerasa , Tuberculosis Bovina , Animales , Bovinos , Etiopía/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/diagnóstico , Estudios Transversales , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Prevalencia , Factores de Riesgo , Mycobacterium bovis/genética , Mycobacterium bovis/aislamiento & purificación , Mycobacterium bovis/clasificación , FemeninoRESUMEN
BACKGROUND: Pandemic zoonotic RNA virus infections have continued to threaten humans and animals worldwide. The objective of this review was to highlight the epidemiology and socioeconomic impacts of pandemic zoonotic RNA virus infections that occurred between 1997 and 2021. METHODS: Literature search was done from Web of Science, PubMed, Google Scholar and Scopus databases, cumulative case fatalities of individual viral infection calculated, and geographic coverage of the pandemics were shown by maps. RESULTS: Seven major pandemic zoonotic RNA virus infections occurred from 1997 to 2021 and were presented in three groups: The first group consists of highly pathogenic avian influenza (HPAI-H5N1) and swine-origin influenza (H1N1) viruses with cumulative fatality rates of 53.5% and 0.5% in humans, respectively. Moreover, HPAI-H5N1 infection caused 90-100% death in poultry and economic losses of >$10 billion worldwide. Similarly, H1N1 caused a serious infection in swine and economic losses of 0.5-1.5% of the Gross Domestic Product (GDP) of the affected countries. The second group consists of severe acute respiratory syndrome-associated coronavirus infection (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) with case fatalities of 9.6%, 34.3% and 2.0%, respectively in humans; but this group only caused mild infections in animals. The third group consists of Ebola and Zika virus infections with case fatalities of 39.5% and 0.02%, respectively in humans but causing only mild infections in animals. CONCLUSION: Similar infections are expected in the near future, and hence strict implementation of conventional biosecurity-based measures and development of efficacious vaccines would help minimize the impacts of the next pandemic infection.
RESUMEN
Background: Extrapulmonary tuberculosis (EPTB) refers to a form of Tuberculosis (TB) where the infection occurs outside the lungs. Despite EPTB being a devastating disease of public health concern, it is frequently overlooked as a public health problem. This study aimed to investigate genetic diversity, identify drug-resistance mutations, and trace ongoing transmission chains. Methods: A cross-sectional study was undertaken on individuals with EPTB in western Ethiopia. In this study, whole-genome sequencing (WGS) was employed to analyze Mycobacterium tuberculosis (MTB) samples obtained from EPTB patients. Out of the 96 genomes initially sequenced, 89 met the required quality standards for genetic diversity, and drug-resistant mutations analysis. The data were processed using robust bioinformatics tools. Results: Our analysis reveals that the majority (87.64%) of the isolates can be attributed to Lineage-4 (L4), with L4.6.3 and L4.2.2.2 emerging as the predominant sub-lineages, constituting 34.62% and 26.92%, respectively. The overall clustering rate and recent transmission index (RTI) were 30 and 17.24%, respectively. Notably, 7.87% of the isolates demonstrated resistance to at least one anti-TB drug, although multi-drug resistance (MDR) was observed in only 1.12% of the isolates. Conclusions: The genetic diversity of MTBC strains in western Ethiopia was found to have low inter-lineage diversity, with L4 predominating and exhibiting high intra-lineage diversity. The notably high clustering rate in the region implies a pressing need for enhanced TB infection control measures to effectively disrupt the transmission chain. It's noteworthy that 68.75% of resistance-conferring mutations went undetected by both GeneXpert MTB/RIF and the line probe assay (LPA) in western Ethiopia. The identification of resistance mutations undetected by both GeneXpert and LPA, along with the detection of mixed infections through WGS, emphasizes the value of adopting WGS as a high-resolution approach for TB diagnosis and molecular epidemiological surveillance.
Asunto(s)
Variación Genética , Mutación , Mycobacterium tuberculosis , Secuenciación Completa del Genoma , Humanos , Etiopía/epidemiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Estudios Transversales , Adulto , Masculino , Femenino , Tuberculosis/microbiología , Tuberculosis/transmisión , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Persona de Mediana Edad , Adolescente , Farmacorresistencia Bacteriana/genética , Adulto Joven , Antituberculosos/farmacología , Tuberculosis ExtrapulmonarRESUMEN
Small ruminants and camels are important livestock species in the United Arab Emirates (UAE), although Brucella infection can limit their productivity. This study aimed to investigate the seroprevalence of Brucella infection and its associated risk factors in small ruminants and camels in the Emirate of Abu Dhabi. Additionally, seropositive animals were tested for the DNA of Brucella. Multispecies competitive enzyme-linked immunosorbent assay (c-ELISA) and multispecies indirect (i-ELISA) were used to test 3,086 animals from 2022 to 2023. Brucella cell surface 31 kDa protein (bcsp31) gene-based real-time polymerase chain reaction (q-PCR) was used to detect Brucella DNA. Multivariate logistic regression was used to assess the association between seroprevalence and potential risk factors. The overall seroprevalences of Brucella infection were 1.7% (95% confidence interval [CI], 1.2%-2.2%) and 5.8% (95% CI, 5.0%-6.7%) based on serial and parallel testing, respectively. The DNA of Brucella was detected in 13 of the 51 seropositive animals. The overall seroprevalence of Brucella infection was associated with the region, type of animal holding, species, and age of the animals. In conclusion, this study documented Brucella infection in small ruminants and camels in the Emirate of Abu Dhabi, warranting necessary intervention strategies to eliminate Brucella infections in livestock populations.
RESUMEN
BACKGROUND: The lineage 4 (L4) of Mycobacterium tuberculosis (MTB) is not only globally prevalent but also locally dominant, surpassing other lineages, with lineage 2 (L2) following in prevalence. Despite its widespread occurrence, factors influencing the expansion of L4 and its sub-lineages remain poorly understood both at local and global levels. Therefore, this study aimed to conduct a pan-genome and identify genomic signatures linked to the elevated prevalence of L4 sublineages among extrapulmonary TB (EPTB) patients in western Ethiopia. METHODS: A cross-sectional study was conducted at an institutional level involving confirmed cases of extrapulmonary tuberculosis (EPTB) patients from August 5, 2018, to December 30, 2019. A total of 75 MTB genomes, classified under lineage 4 (L4), were used for conducting pan-genome and genome-wide association study (GWAS) analyses. After a quality check, variants were identified using MTBseq, and genomes were de novo assembled using SPAdes. Gene prediction and annotation were performed using Prokka. The pan-genome was constructed using GET_HOMOLOGUES, and its functional analysis was carried out with the Bacterial Pan-Genome Analysis tool (BPGA). For GWAS analysis, Scoary was employed with Benjamini-Hochberg correction, with a significance threshold set at p-value ≤ 0.05. RESULTS: The analysis revealed a total of 3,270 core genes, predominantly associated with orthologous groups (COG) functions, notably in the categories of '[R] General function prediction only' and '[I] Lipid transport and metabolism'. Conversely, functions related to '[N] Cell motility' and '[Q] Secondary metabolites biosynthesis, transport, and catabolism' were primarily linked to unique and accessory genes. The pan-genome of MTB L4 was found to be open. Furthermore, the GWAS study identified genomic signatures linked to the prevalence of sublineages L4.6.3 and L4.2.2.2. CONCLUSIONS: Apart from host and environmental factors, the sublineage of L4 employs distinct virulence factors for successful dissemination in western Ethiopia. Given that the functions of these newly identified genes are not well understood, it is advisable to experimentally validate their roles, particularly in the successful transmission of specific L4 sublineages over others.
Asunto(s)
Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Mycobacterium tuberculosis , Tuberculosis , Humanos , Etiopía/epidemiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis/microbiología , Tuberculosis/epidemiología , Tuberculosis/genética , Estudios Transversales , Masculino , Femenino , Adulto , Filogenia , Genómica/métodos , Persona de Mediana Edad , Adulto Joven , Adolescente , Tuberculosis ExtrapulmonarRESUMEN
Bovine tuberculosis (bTB) is endemic and has a substantial impact on the livestock sector in Ethiopia and other low and middle-income countries (LMICs). With a national emphasis on dairy farm intensification to boost milk production and spur economic growth, the incidence of bTB is anticipated to rise. However, Ethiopia, like other LMICs, lacks a comprehensive national bTB control strategy due to the economic and social infeasibility of traditional test-and-cull (TC) approaches. To inform the development of such a strategy, we evaluated the effectiveness and feasibility of TC and test-and-segregation (TSg) strategies for bTB control on Ethiopian dairy farms. A TC approach was used at Farm A [N = 62; comparative cervical test (CCT) > 4 mm, starting prevalence 11.3%] while TSg was implemented at Farm B (N = 45; CCT > 4 mm, prevalence 22.2%), with testing intervals of 2-4 months. Both strategies achieved a reduction in bTB prevalence to 0%, requiring seven rounds of TC over 18 months at Farm A, and five rounds of TSg over 12 months at Farm B's negative herd. The results show that adopting more sensitive thresholds [CCT > 0 mm or single cervical test (SCT) > 2 mm] during later rounds was pivotal in identifying and managing previously undetected infections, emphasizing the critical need for optimized diagnostic thresholds. Cost analysis revealed that TC was approximately twice as expensive as TSg, primarily due to testing, labor, and cow losses in TC, versus construction of new facilities and additional labor for TSg. This underscores the economic and logistical challenges of bTB management in resource-limited settings. Taken together, our study highlights an urgent need for the exploration of alternative approaches including TSg and or vaccination to mitigate within herd transmission and enable implementation of bTB control in regions where TC is not feasible.
Asunto(s)
Industria Lechera , Estudios de Factibilidad , Tuberculosis Bovina , Bovinos , Animales , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/prevención & control , Tuberculosis Bovina/diagnóstico , Etiopía/epidemiología , Industria Lechera/métodos , Prevalencia , Granjas , Femenino , Mycobacterium bovisRESUMEN
Ethiopia is one of the countries with a high tuberculosis (TB) burden, yet little is known about the spatial distribution of Mycobacterium tuberculosis (Mtb) lineages. This study identifies the spoligotyping of 1735 archived Mtb isolates from the National Drug Resistance Survey, collected between November 2011 and June 2013, to investigate Mtb population structure and spatial distribution. Spoligotype International Types (SITs) and lineages were retrieved from online databases. The distribution of lineages was evaluated using Fisher's exact test and logistic regression models. The Global Moran's Index and Getis-Ord Gi statistic were utilized to identify hotspot areas. Our results showed that spoligotypes could be interpreted and led to 4 lineages and 283 spoligotype patterns in 91% of the isolates, including 4% of those with multidrug/rifampicin resistance (MDR/RR) TB. The identified Mtb lineages were lineage 1 (1.8%), lineage 3 (25.9%), lineage 4 (70.6%) and lineage 7 (1.6%). The proportion of lineages 3 and 4 varied by regions, with lineage 3 being significantly greater than lineage 4 in reports from Gambella (AOR = 4.37, P < 0.001) and Tigray (AOR = 3.44, P = 0.001) and lineage 4 being significantly higher in Southern Nations Nationalities and Peoples Region (AOR = 1.97, P = 0.026) than lineage 3. Hotspots for lineage 1 were located in eastern Ethiopia, while a lineage 7 hotspot was identified in northern and western Ethiopia. The five prevalent spoligotypes, which were SIT149, SIT53, SIT25, SIT37 and SIT26 account for 42.8% of all isolates under investigation, while SIT149, SIT53 and SIT21 account for 52-57.8% of drug-resistant TB cases. TB and drug resistant TB are mainly caused by lineages 3 and 4, and significant proportions of the prevalent spoligotypes also influence drug-resistant TB and the total TB burden. Regional variations in lineages may result from both local and cross-border spread.
Asunto(s)
Mycobacterium tuberculosis , Etiopía/epidemiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis/epidemiología , Tuberculosis/microbiología , Técnicas de Tipificación BacterianaRESUMEN
Bacillus Calmette-Guérin (BCG) is a routinely used vaccine for protecting children against Mycobacterium tuberculosis that comprises attenuated Mycobacterium bovis. BCG can also be used to protect livestock against M. bovis; however, its effectiveness has not been quantified for this use. We performed a natural transmission experiment to directly estimate the rate of transmission to and from vaccinated and unvaccinated calves over a 1-year exposure period. The results show a higher indirect efficacy of BCG to reduce transmission from vaccinated animals that subsequently become infected [74%; 95% credible interval (CrI): 46 to 98%] compared with direct protection against infection (58%; 95% CrI: 34 to 73%) and an estimated total efficacy of 89% (95% CrI: 74 to 96%). A mechanistic transmission model of bovine tuberculosis (bTB) spread within the Ethiopian dairy sector was developed and showed how the prospects for elimination may be enabled by routine BCG vaccination of cattle.
Asunto(s)
Vacuna BCG , Erradicación de la Enfermedad , Mycobacterium bovis , Tuberculosis Bovina , Vacunación , Eficacia de las Vacunas , Animales , Bovinos , Vacuna BCG/administración & dosificación , Mycobacterium bovis/inmunología , Tuberculosis Bovina/prevención & control , Tuberculosis Bovina/transmisión , Vacunación/métodos , Vacunación/veterinaria , Erradicación de la Enfermedad/métodosRESUMEN
Although homeless segment of the society could be the hotspots for tuberculosis (TB) transmission, there is little data on TB in homeless individuals in Ethiopia. The objective of this study was to investigate the molecular epidemiology and drug sensitivity of Mycobacterium tuberculosis (M. tuberculosis) isolated from homeless individuals in Addis Ababa, Ethiopia. The study was conducted on 59 M. tuberculosis isolates, which were recovered by the clinical screening of 5600 homeless individuals and bacteriological examination of 641 individuals with symptoms of pulmonary tuberculosis (PTB). Region of difference-9 (RD9) based polymerase-chain reaction (PCR), Spoligotyping and 24-loci Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) typing were used for genotyping of the isolates. In addition, drug sensitivity test was performed on the isolates using BD Bactec Mycobacterial Growth Inhibition Tube (MGIT) 960. Fifty-eight of the 59 isolates were positive by spoligotyping and spoligotyping International type (SIT) 53, SIT 37, and SIT 149 were the dominant spoligotypes; each consisting of 19%, 15.5%, and10.3% of the isolates, respectively. The majority of the isolates (89.7%) were members of the Euro-American (EA) major lineage. MIRU-VNTR identified Ethiopia_3, Delhi/CAS, Ethiopia_2, TUR, X-type, Ethiopia_H37Rv-like strain, Haarlem and Latin-American Mediterranean (LAM) sub lineages. The proportion of clustering was 77.6% (45/58) in spoligotyping while it was 39.7% (23/58) in 24-loci MIRU-VNTR typing. Furthermore, the proportion of clustering was significantly lowered to 10.3% (6/58) when a combination of spoligotyping and 24-loci MIRU-VNTRplus was used. The recent transmission index (RTI) recorded by spoligotyping, 24-loci MIRU-VNTR typing, and a combination of the two genotyping methods were 58.6%, 27.6% and 5.2%, respectively. Young age and living in groups were significantly associated with strain clustering (P < 0.05). The drug sensitivity test (DST) result showed 8.9% (4/58) of the isolates were resistant to one or more first line ant-TB drugs; but multidrug resistant isolate was not detected. Clustering and RTI could suggest the transmission of TB in the homeless individuals, which could suggest a similar pattern of transmission between homeless individuals and the general population. Hence, the TB control program should consider homeless individuals during the implementation of TB control program.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Epidemiología Molecular , Etiopía/epidemiología , Tuberculosis/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/diagnóstico , Repeticiones de Minisatélite , GenotipoRESUMEN
BACKGROUND: Understanding the transmission dynamics of Mycobacterium tuberculosis (Mtb) could benefit the design of tuberculosis (TB) prevention and control strategies for refugee populations. Whole Genome Sequencing (WGS) has not yet been used to document the Mtb transmission dynamics among refugees in Ethiopia. We applied WGS to accurately identify transmission clusters and Mtb lineages among TB cases in refugee camps in Ethiopia. METHOD AND DESIGN: We conducted a cross-sectional study of 610 refugees in refugee camps in Ethiopia presenting with symptoms of TB. WGS data of 67 isolates was analyzed using the Maximum Accessible Genome for Mtb Analysis (MAGMA) pipeline; iTol and FigTree were used to visualize phylogenetic trees, lineages, and the presence of transmission clusters. RESULTS: Mtb culture-positive refugees originated from South Sudan (52/67, 77.6%), Somalia (9/67, 13.4%). Eritrea (4/67, 6%), and Sudan (2/67, 3%). The majority (52, 77.6%) of the isolates belonged to Mtb lineage (L) 3, and one L9 was identified from a Somalian refugee. The vast majority (82%) of the isolates were pan-susceptible Mtb, and none were multi-drug-resistant (MDR)-TB. Based on the 5-single nucleotide polymorphisms cutoff, we identified eight potential transmission clusters containing 23.9% of the isolates. Contact investigation confirmed epidemiological links with either family or social interaction within the refugee camps or with neighboring refugee camps. CONCLUSION: Four lineages (L1, L3, L4, and L9) were identified, with the majority of strains being L3, reflecting the Mtb L3 dominance in South Sudan, where the majority of refugees originated from. Recent transmission among refugees was relatively low (24%), likely due to the short study period. The improved understanding of the Mtb transmission dynamics using WGS in refugee camps could assist in designing effective TB control programs for refugees.
Asunto(s)
Mycobacterium tuberculosis , Refugiados , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Etiopía/epidemiología , Estudios Transversales , Filogenia , Campos de Refugiados , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Genómica , Antituberculosos/farmacologíaRESUMEN
BACKGROUND: Paratuberculosis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic progressive granulomatous enteritis mainly affecting domestic and wild ruminants worldwide. Although paratuberculosis could be prevail in Ethiopia, there is a scarcity of epidemiological data on paratuberculosis in the country. Thus, this study was conducted to estimate the prevalence of paratuberculosis based on gross and microscopic lesions in cattle slaughtered at ELFORA Abattoir, central Ethiopia. Small intestines and associated lymph nodes of 400 apparently healthy cattle which were slaughtered at ELFORA export abattoir were examined for gross and microscopic lesions of paratuberculosis. The microscopic lesions were classified into four grades (I-IV) based on the type and number of cells infiltrated into the lesion. The prevalence of paratuberculosis was estimated on the basis of gross as well as microscopic lesion of paratuberculosis. RESULTS: The prevalence of paratuberculosis was 11.25% (95% Confidence interval, CI = 0.083-0.148) on the basis of gross lesion. However, relatively lower prevalence (2.0%, 95% CI = 0.01, 0.039) was recorded based on microscopic lesion. The gross lesions were characterized by intestinal thickening, mucosal corrugations and enlargement of associated mesenteric lymph nodes. On the other hand, the microscopic lesions were characterized by granuloma of different grades ranging from grade I to grade III lesions. CONCLUSIONS: The present study indicated the occurrence of paratuberculosis in cattle of Ethiopia based on the detection of gross and microscopic lesions consistent with the lesion of paratuberculosis. The result of this study could be used as baseline information for future studies on the epidemiology and economic significance of paratuberculosis.
Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Paratuberculosis/epidemiología , Paratuberculosis/diagnóstico , Prevalencia , Etiopía/epidemiología , Enfermedades de los Bovinos/microbiologíaRESUMEN
In this study, we reported the isolation, identification, and molecular characteristics of nine BVDV strains that were isolated from the serum of persistently infected cattle. The new strains were designated as BVDV TJ2101, TJ2102, TJ2103, TJ2104, TJ2105, TJ2106, TJ2107, TJ2108 and TJ2109. The TJ2102 and TJ2104 strains were found to be cytopathic BVDV, and the other strains were non-cytopathic BVDV. An alignment and phylogenetic analysis showed that the new isolates share 92.2-96.3% homology with the CP7 strain and, thus, were classified as the BVDV-1b subgenotype. A recombination analysis of the genome sequences showed that the new strains could be recombined by the major parent BVDV-1a NADL strain and the minor parent BVDV-1m SD-15 strain. Some genome variations or unique amino acid mutations were found in 5'-UTR, E0 and E2 of these new isolates. In addition, a potential linear B cell epitopes prediction showed that the potential linear B cell epitope at positions 56-61 is highly variable in BVDV-1b. In conclusion, the present study has identified nine strains of BVDV from persistently infected cattle in China. Further studies on the virulence and pathogenesis of these new strains are recommended.
RESUMEN
BACKGROUND: Worldwide, tuberculosis (TB) affects about one million children every year. The burden of the disease is higher in developing countries. However, there is limited information on the lineages and drug sensitivity patterns of Mycobacterium tuberculosis (M. tuberculosis) infecting children in these countries, including Ethiopia. Thus, this study aimed to characterize the different lineages of the M. tuberculosis complex causing childhood pulmonary tuberculosis and evaluate the drug-sensitivity patterns to the first-line anti-TB drugs. METHOD: A total of 54 stored cultures were used in this study. The region of difference 9 (RD9) based polymerase chain reaction (PCR) and spoligotyping were employed for the identification of the isolates at the species and lineages level respectively. Lineage identification was done by using the pre-existing database. Identification of clustering of the spoligotype patterns was by using the SPOLIDB3-based model. The result was retrieved by the most probable family format. Furthermore, the phenotypic, and genotypic drug-sensitivity test (DST) was performed using Mycobacterium Growth Indicator Tube (MGIT™ 960) and GenoTypeMTBDRplus assay respectively. Data analysis was done using SPSS version 27 software. RESULT: Spoligotyping produced 39 interpretable results for M. tuberculosis. The majority (74.4%) of them were clustered into 7 groups, while the rest (25.6%) were single. The Euro-American (EA) lineage was the predominant lineage (64.1%) followed by the East-African Indian (EAI) (30.8%) and M. Africanum (5.1%) lineages. The most predominant subtypes were SIT37 (15.4%), SIT149 (12.8%), SIT25 (7.7%), and SIT53 (7.7%). Furthermore, of the identified SITs, T1 and CAS families consisted of 38.5% and 28.2% of the lineages respectively. Drug susceptibility was 91.9% by phenotypic method and 97.4% by molecular assay. The overall prevalence of any resistance was 7.8% and there was a single MDR-TB. CONCLUSION: Many of the isolates belong to the modern lineages (Euro American) representing the most common circulating strains in the country. More importantly, despites the tiny isolates tested, drug resistance is low. To fully describe the molecular epidemiology of MTBC lineages in children, we recommend a prospective large-scale study.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Niño , Etiopía/epidemiología , Estudios Prospectivos , Tuberculosis/epidemiología , Resistencia a Medicamentos , Genotipo , Variación GenéticaRESUMEN
BACKGROUND: Tuberculosis (TB) causes significant morbidity and mortality in refugee populations. Although Ethiopia is the third largest refugee-hosting country in Africa, there is limited published data on the prevalence and associated factors of TB in refugees. The objective of this study was to estimate the prevalence of bacteriologically confirmed pulmonary TB (PTB) and explore associated factors in presumptive TB refugees residing in refugee camps in Ethiopia. METHODS: A facility-based cross-sectional study was conducted between February and August 2021 in refugee camps in Ethiopia. Data were collected consecutively from 610 presumptive TB refugees who attended for TB diagnosis in selected refugee camp clinics in Ethiopia. A pre-tested questionnaire was used to collect data, and sputum samples were collected from eligible study participants. The Xpert Mycobacterium tuberculosis (MTB)/Rifampicin (RIF) assay was performed on direct spot sputum samples, whereas morning sputum samples were processed and inoculated for bacteriological culture using Mycobacterium Growth Indicator Tube (MGIT) and Lowsteen Jensen (LJ) methods. The statistical software package (STATA version 14) was used for statistical analysis. A logistic regression model was used for the evaluation of the association between bacteriologically confirmed TB cases and the associated factors. Descriptive statistics were used for the expression of the results, and statistical significance was assumed at p < 0.05. RESULTS: Out of 610 study participants, more than half were female (54.9%), and the mean age was 37.9 years (SD, 16.64). The prevalence of bacteriologically confirmed PTB cases among refugees residing in refugee camps in Ethiopia was 13.3% (95% CI, 10.7-16.2%) using the Xpert MTB/RIF assay and/or culture. MTB was detected in 12.8% (95% CI, 10.2-15.7%) of the individuals using the Xpert MTB/RIF assay, while culture positivity was observed in 11.6% (95% CI, 9.2-14.5%). The multivariable logistic regression model showed South Sudan origins (adjusted odds ratio, AOR = 7.74; 95% CI, 3.05-19.64), age group, 19-38 years old (AOR = 5.66; 95% CI, 1.86-17.28), and male sex (AOR = 2.69; 95% CI, 1.58-4.56) were significantly associated with the bacteriologically confirmed TB among refugees residing in refugee camps in Ethiopia. CONCLUSION: The prevalence of bacteriologically confirmed PTB among presumptive TB refugees residing in refugee camps in Ethiopia was high. The national TB program should strengthen TB prevention and control activities in the refugee camps of Ethiopia. Moreover, an active TB survey program should be implemented in refugee camps in Ethiopia.
Asunto(s)
Mycobacterium tuberculosis , Refugiados , Tuberculosis , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Campos de Refugiados , Prevalencia , Etiopía/epidemiología , Estudios Transversales , Tuberculosis/epidemiología , Rifampin , Esputo/microbiología , Sensibilidad y EspecificidadRESUMEN
Brucellosis remains one of the most significant zoonotic diseases globally, responsible for both considerable human morbidity and economic losses due to its impacts on livestock productivity. Despite this, there remain significant evidence gaps in many low- and middle-income countries, including those of sub-Saharan Africa. Here we report the first molecular characterisation of Brucella sp. from Ethiopia. Fifteen Brucella sp. isolates from an outbreak in cattle from a herd in central Ethiopia were identified as Brucella abortus, using bacterial culture and molecular methods. Sequencing of the Ethiopian B. abortus isolates allowed their phylogenetic comparison with 411 B. abortus strains of diverse geographical origins, using whole genome single nucleotide polymorphisms (wgSNP). The Ethiopian isolates belonged to an early-branching lineage (Lineage A) previously only represented by data from two strains, both of sub-Saharan African origin (Kenya and Mozambique). A second B. abortus lineage (Lineage B), also comprised solely of strains originating from sub-Saharan Africa, was identified. The majority of strains belonged to one of two lineages of strains originating from a much broader geographical range. Further analyses based on multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA) expanded the number of B. abortus strains available for comparison with the Ethiopian isolates and were consistent with the findings from wgSNP analysis. MLST profiles of the Ethiopian isolates expanded the sequence type (ST) diversity of the early branching lineage of B. abortus, equivalent to wgSNP Lineage A. A more diverse cluster of STs, equivalent to wgSNP Lineage B, was comprised solely of strains originating from sub-Saharan Africa. Similarly, analysis of B. abortus MLVA profiles (n = 1891) confirmed that the Ethiopian isolates formed a unique cluster, similar to only two existing strains, and distinct from the majority of other strains of sub-Saharan African origin. These findings expand the known diversity of an under-represented lineage of B. abortus and suggest a potential evolutionary origin for the species in East Africa. In addition to providing information concerning Brucella species extant within Ethiopia this work serves as the basis for further studies on the global population structure and evolutionary history of a major zoonotic pathogen.
RESUMEN
Background: Refugees in developing countries have poor access to Tuberculosis (TB) care and control services. The understanding of genetic diversity and drug sensitivity patterns of M. tuberculosis (MTB) is important for the TB control program. However, there is no evidence that shows the drug sensitivity profiles and genetic diversity of MTB circulating among refugees residing in Ethiopia. This study aimed to investigate the genetic diversity of MTB strains and lineages, and to identify the drug sensitivity profiles of MTB isolated from refugees residing in Ethiopia. Methods: A cross-sectional study was conducted among 68 MTB positive cases isolated from presumptive TB refugees from February to August 2021. Data and samples were collected in the refugee camp clinics and both rapid TB Ag detection and region of difference (RD)-9 deletion typing were used to confirm the MTBs. Drug susceptibility test (DST) and molecular typing were done using Mycobacterium Growth Indicator Tube (MGIT) method and spoligotyping respectively. Results: DST and spoligotyping results were available for all 68 isolates. The isolates were grouped into 25 spoligotype patterns, which consisted of 1-31 isolates with 36.8% strain diversity. The international shared type (SIT)25 was predominant spoligotype pattern consisting of 31 (45.6%) isolates, followed by SIT24 comprising 5 (7.4%) isolates. Further investigation showed that 64.7% (44/68) of the isolates were belonged to CAS1-Delhi family and 75% (51/68) of the isolates were belonged to lineage(L)-3. Multi-drug resistance (MDR)-TB was observed only in one isolate (1.5%) for first-line anti-TB drugs and the highest level of mono-resistance, 5.9% (4/68), was observed for PZA(Pyrazinamide). Mono-resistance was observed in 2.9 % (2/68) and while 97.0% (66/68) of the MTB positive cases were susceptible to the second-line anti-TB drugs. Conclusion: The findings are useful evidence for the TB screening, treatment and control in refugee populations and surrounding communities in Ethiopia.
RESUMEN
Background: Homeless individuals are at a high risk of infection with Mycobacterium tuberculosis (M. tuberculosis) as compared to the general population. The number of homeless individuals has been increasing in Addis Ababa City during the last three decades due to the migration of rural inhabitants to the City for better living conditions. The objective of this study was to estimate the prevalence of pulmonary tuberculosis (PTB) and evaluate associated risk factors in homeless individuals in Addis Ababa City. Methods: A total of 5,600 homeless individuals were screened for PTB symptoms using WHO guideline between February 2019 and December 2020. Sputum samples were cultured from individuals with symptoms of PTB for mycobacterial isolation. Logistic regression analysis was used to identify factors associated with PTB. Results: The prevalence of bacteriologically confirmed cases was 1.1% (59/5,600) or 10.54 per 1000 population. Multinomial logistic regression analysis showed that being homeless for more than 5 years, body mass index (BMI) < 18.5, smoking cigarette, living in a group of more than five individuals, close contact with chronic coughers, imprisonment and HIV infection were significantly associated with the prevalence of PTB in homeless individuals (P < 0.05). Conclusion: In conclusion, the result of this study indicated that the prevalence of PTB in homeless individuals was higher than the prevalence of PTB in the general population of Addis Ababa City requiring for the inclusion of the homeless individuals in the TB control program.
Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Infecciones por VIH/epidemiología , Etiopía/epidemiología , Prevalencia , Esputo/microbiología , Estudios Transversales , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/microbiologíaRESUMEN
Background: Tuberculosis (TB) is one of the leading causes of morbidity and mortality in low-income countries like Ethiopia. However, because of the limited laboratory infrastructure there is a shortage of comprehensive data on the genotypes of clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) complex (MTBC) in peripheral regions of Ethiopia. The objective of this study was to characterize MTBC isolates in the Somali region of eastern Ethiopia. Methods: A cross-sectional study was conducted in three health institutions between October 2018 and December 2019 in the capital of Somali region. A total of 323 MTBC isolates (249 from pulmonary TB and 74 from extrapulmonary TB) were analyzed using regions of difference 9 (RD 9)-based polymerase chain reaction (PCR) and spoligotyping. Results: Of the 323 MTBC isolates, 99.7% (95% CI: 99.1-100%) were M. tuberculosis while the remaining one isolate was M. bovis based on RD 9-based PCR. Spoligotyping identified 71 spoligotype patterns; 61 shared types and 10 orphans. A majority of the isolates were grouped in shared types while the remaining grouped in orphans. The M. tuberculosis lineages identified in this study were lineage 1, 2, 3, 4, and 7 with the percentages of 7.4, 2.2, 28.2, 60.4, and 0.6%, respectively. Most (87.9%) of the isolates were classified in clustered spoligotypes while the remaining 12.1% isolates were singletons. The predominant clustered spoligotypes identified were SIT 149, SIT 21, SIT 26, SIT 53, and SIT 52, each consisting of 17.6, 13.3, 8.4, 7.4, and 5%, respectively. Lineage 3 and lineage 4, as well as the age group (15-24), were associated significantly with clustering. Conclusion: The MTBC isolated from TB patients in Somali region were highly diverse, with considerable spoligotype clustering which suggests active TB transmission. In addition, the Beijing spoligotype was isolated in relatively higher frequency than the frequencies of its isolation from the other regions of Ethiopia warranting the attention of the TB Control Program of the Somali region.