RESUMEN
Since Mongolian gerbils are broadly susceptible to hepatitis E virus (HEV), including genotypes 1, 4, 5, and 8 (HEV-1, HEV-5, HEV-5, and HEV-8) and rat HEV, they are a useful small animal model for HEV. However, we have observed that the subtypes HEV-3k and HEV-3ra in genotype 3 HEV (HEV-3) were not infected efficiently in the gerbils. A small-animal model for HEV-3 is also needed since HEV-3 is responsible for major zoonotic HEV infections. To investigate whether gerbils can be used as animal models for other subtypes of HEV-3, we injected gerbils with five HEV-3 subtypes (HEV-3b, -3e, -3f, -3k, and -3ra) and compared the infectivity of the subtypes. We detected viral RNA in the gerbils' feces. High titers of anti-HEV IgG antibodies in serum were induced in all HEV-3b/ch-, HEV-3f-, and HEV-3e-injected gerbils. Especially, the HEV-3e-injected animals released high levels of viruses into their feces for an extended period. The virus replication was limited in the HEV-3b/wb-injected and HEV-3k-injected groups. Although viral RNA was detected in HEV-3ra-injected gerbils, the copy numbers in fecal specimens were low; no antibodies were detected in the sera. These results indicate that although HEV-3's infectivity in gerbils depends on the subtype and strain, Mongolian gerbils have potential as a small-animal model for HEV-3. A further comparison of HEV-3e with different genotype strains (HEV-4i and HEV-5) and different genera (rat HEV) revealed different ALT elevations among the strains, and liver damage occurred in HEV-4i- and HEV-5-infected but not HEV-3e- or rat HEV-infected gerbils, demonstrating variable pathogenicity across HEVs from different genera and genotypes in Mongolian gerbils. HEV-4i- and HEV-5-infected Mongolian gerbils might be candidate animal models to examine HEV's pathogenicity.
Asunto(s)
Modelos Animales de Enfermedad , Genotipo , Gerbillinae , Virus de la Hepatitis E , Hepatitis E , ARN Viral , Replicación Viral , Animales , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/patogenicidad , Virus de la Hepatitis E/aislamiento & purificación , Gerbillinae/virología , Hepatitis E/virología , Hepatitis E/veterinaria , ARN Viral/genética , Heces/virología , Anticuerpos Antihepatitis/sangreRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected or isolated from domestic cats. It is unclear whether cats play an important role in the SARS-CoV-2 transmission cycle. In this study, we examined the susceptibility of cats to SARS-CoV-2, including wild type and variants, by animal experiments. Cats inoculated with wild type, gamma, and delta variants secreted a large amount of SARS-CoV-2 for 1 week after the inoculation from nasal, oropharyngeal, and rectal routes. Only 100 TCID50 of virus could infect cats and replicate well without severe clinical symptoms. In addition, one cat inoculated with wild type showed persistent virus secretion in feces for over 28 days post-inoculation (dpi). The titer of virus-neutralizing (VN) antibodies against SARS-CoV-2 increased from 11 dpi, reaching a peak at 14 dpi. However, the omicron variant could not replicate well in cat tissues and induced a lower titer of VN antibodies. It is concluded that cats were highly susceptible to SARS-CoV-2 infection, but not to the Omicron Variant, which caused the attenuated pathogenicity.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Gatos , Animales , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , COVID-19/virología , COVID-19/veterinaria , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Enfermedades de los Gatos/virología , Heces/virología , FemeninoRESUMEN
There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE: The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.
Asunto(s)
Infecciones por Caliciviridae , Duodeno , Genotipo , Sapovirus , Replicación Viral , Sapovirus/genética , Humanos , Duodeno/virología , Duodeno/inmunología , Línea Celular , Animales , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/inmunología , Gastroenteritis/virología , Antígenos Virales/inmunología , Antígenos Virales/genética , Heces/virología , Conejos , Cobayas , Variación Genética , ARN Viral/genética , Cultivo de Virus , Ácidos y Sales BiliaresRESUMEN
Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.
Asunto(s)
Anticuerpos Neutralizantes , Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Vacunación , Animales , Virus Linfotrópico T Tipo 1 Humano/inmunología , Infecciones por HTLV-I/inmunología , Infecciones por HTLV-I/prevención & control , Anticuerpos Neutralizantes/inmunología , Humanos , Macaca fascicularis , Carga Viral , Linfocitos T CD8-positivos/inmunología , Productos del Gen env/inmunología , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Modelos Animales de EnfermedadRESUMEN
Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra el Dengue , Virus del Dengue , Dengue , Vacunas de Partículas Similares a Virus , Animales , Femenino , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Dengue/prevención & control , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/inmunología , Vacunas contra el Dengue/administración & dosificación , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Inmunoglobulina G/inmunología , Macaca fascicularis , Macaca mulatta , Serogrupo , Vacunación , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Replicación ViralRESUMEN
A Japanese rabbit hepatitis E virus (HEV) strain, JP-59, has been identified in a feral rabbit. When this virus was transmitted to a Japanese white rabbit, it caused persistent HEV infection. The JP-59 strain shares an <87.5% nucleotide sequence identity with other rabbit HEV strains. Herein, to isolate JP-59 by cell culture, we used a 10% stool suspension recovered from a JP-59-infected Japanese white rabbit and contained 1.1 × 107 copies/mL of the viral RNA and using it to infect a human hepatocarcinoma cell line, PLC/PRF/5. No sign of virus replication was observed. Although long-term virus replication was observed in PLC/PRF/5 cells inoculated with the concentrated and purified JP-59 containing a high titer of viral RNA (5.1 × 108 copies/mL), the viral RNA of JP-59c that was recovered from the cell culture supernatants was <7.1 × 104 copies/mL during the experiment. The JP-59c strain did not infect PLC/PRF/5 cells, but its intravenous inoculation caused persistent infection in rabbits. The nucleotide sequence analyses of the virus genomes demonstrated that a total of 18 nucleotide changes accompanying three amino acid mutations occurred in the strain JP-59c compared to the original strain JP-59. These results indicate that a high viral RNA titer was required for JP-59 to infect PLC/PRF/5 cells, but its replication capability was extremely low. In addition, the ability of rabbit HEVs to multiply in PLC/PRF/5 cells varied depending on the rabbit HEV strains. The investigations of cell lines that are broadly susceptible to rabbit HEV and that allow the efficient propagation of the virus are thus needed.
Asunto(s)
Virus de la Hepatitis E , Cultivo de Virus , Replicación Viral , Animales , Humanos , Conejos , Hepatitis E/veterinaria , Virus de la Hepatitis E/fisiología , ARN Viral/genética , ARN Viral/análisis , Línea Celular TumoralRESUMEN
Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Infección Latente , Adulto , Animales , Humanos , Linfocitos T CD8-positivos , Virus Linfotrópico T Tipo 1 Humano/fisiología , Provirus , Macaca fascicularis , Proliferación Celular , Carga ViralRESUMEN
The live-attenuated oral polio vaccine has long been used as the standard for polio prevention, but in order to minimize the emergence of pathogenic revertants, the inactivated polio vaccine (IPV), which is administered intramuscularly or subcutaneously, is being increasingly demanded worldwide. However, there is a global shortage of IPV, and its cost is an obstacle in developing countries. Therefore, dose-sparing with intradermal administration of IPV has been investigated. In this study, rats were immunized by intradermal (ID) and intramuscular (IM) administration of Sabin-derived inactivated polio vaccine (sIPV) produced in Japan, and the immune responses were evaluated. The results showed that one-fifth (1/5)-dose of ID administration yielded neutralizing antibody titers comparable to the full-dose IM administration, whereas 1/5-dose of IM administration was less effective than the full dose. Furthermore, a vertical puncture-type ID injection device (Immucise) that was originally developed for humans was modified for rats, resulting in successful and stable ID administration into the thin skin of rats. Based on these results, the ID administration of sIPV using Immucise in clinical use is expected to offer benefits such as reduced amounts of vaccine per dose, cost-effectiveness, and thereby the feasibility of vaccination for more people.
Asunto(s)
Poliomielitis , Poliovirus , Ratas , Humanos , Animales , Vacuna Antipolio Oral , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inyecciones Intradérmicas , Japón , Poliomielitis/prevención & control , Vacuna Antipolio de Virus InactivadosRESUMEN
Genotype 1 hepatitis E virus (HEV-1), unlike other genotypes of HEV, has a unique small open reading frame known as ORF4 whose function is not yet known. ORF4 is located in an out-framed manner in the middle of ORF1, which encodes putative 90 to 158 amino acids depending on the strains. To explore the role of ORF4 in HEV-1 replication and infection, we cloned the complete genome of wild-type HEV-1 downstream of a T7 RNA polymerase promoter, and the following ORF4 mutant constructs were prepared: the first construct had TTG instead of the initiation codon ATG (A2836T), introducing an MâL mutation in ORF4 and a DâV mutation in ORF1. The second construct had ACG instead of the ATG codon (T2837C), introducing an MâT mutation in ORF4. The third construct had ACG instead of the second in-frame ATG codon (T2885C), introducing an MâT mutation in ORF4. The fourth construct contained two mutations (T2837C and T2885C) accompanying two MâT mutations in ORF4. For the latter three constructs, the accompanied mutations introduced in ORF1 were all synonymous changes. The capped entire genomic RNAs were generated by in vitro transcription and used to transfect PLC/PRF/5 cells. Three mRNAs containing synonymous mutations in ORF1, i.e., T2837CRNA, T2885CRNA, and T2837C/T2885CRNA, replicated normally in PLC/PRF/5 cells and generated infectious viruses that successfully infected Mongolian gerbils as the wild-type HEV-1 did. In contrast, the mutant RNA, i.e., A2836TRNA, accompanying an amino acid change (D937V) in ORF1 generated infectious viruses upon transfection, but they replicated slower than the wild-type HEV-1 and failed to infect Mongolian gerbils. No putative viral protein(s) derived from ORF4 were detected in the wild-type HEV-1- as well as the mutant virus-infected PLC/PRF/5 cells by Western blot analysis using a high-titer anti-HEV-1 IgG antibody. These results demonstrated that the ORF4-defective HEV-1s had the ability to replicate in the cultured cells, and that these defective viruses had the ability to infect Mongolian gerbils unless the overlapping ORF1 was accompanied by non-synonymous mutation(s), confirming that ORF4 is not essential in the replication and infection of HEV-1.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Virus de la Hepatitis E/genética , Sistemas de Lectura Abierta , Gerbillinae , Replicación Viral , Codón , Genotipo , Hepatitis E/genéticaRESUMEN
Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods: Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results: In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion: These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.
RESUMEN
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Gerbillinae , Anticuerpos Antihepatitis , Inmunoglobulina G , Mongolia , ARN Viral/genética , Conejos , RatasRESUMEN
Effective vaccines are essential for the control of the coronavirus disease 2019 (COVID-19) pandemic. Currently developed vaccines inducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-antigen-specific neutralizing antibodies (NAbs) are effective, but the appearance of NAb-resistant S variant viruses is of great concern. A vaccine inducing S-independent or NAb-independent SARS-CoV-2 control may contribute to containment of these variants. Here, we investigate the efficacy of an intranasal vaccine expressing viral non-S antigens against intranasal SARS-CoV-2 challenge in cynomolgus macaques. Seven vaccinated macaques exhibit significantly reduced viral load in nasopharyngeal swabs on day 2 post-challenge compared with nine unvaccinated controls. The viral control in the absence of SARS-CoV-2-specific NAbs is significantly correlated with vaccine-induced, viral-antigen-specific CD8+ T cell responses. Our results indicate that CD8+ T cell induction by intranasal vaccination can result in NAb-independent control of SARS-CoV-2 infection, highlighting a potential of vaccine-induced CD8+ T cell responses to contribute to COVID-19 containment.
Asunto(s)
Administración Intranasal/métodos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunación/métodos , Animales , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus/inmunología , Proteínas M de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Modelos Animales de Enfermedad , Femenino , Macaca fascicularis , Masculino , Pandemias/prevención & control , Fosfoproteínas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Resultado del Tratamiento , Células Vero , Carga ViralRESUMEN
Rat hepatitis E virus (rat HEV) was first identified in wild rats and was classified as the species Orthohepevirus C in the genera Orthohepevirus, which is genetically different from the genotypes HEV-1 to HEV-8, which are classified as the species Orthohepevirus A. Although recent reports suggest that rat HEV transmits to humans and causes hepatitis, the infectivity of rat HEV to non-human primates such as cynomolgus and rhesus monkeys remains controversial. To investigate whether rat HEV infects non-human primates, we inoculated one cynomolgus monkey and five rhesus monkeys with a V-105 strain of rat HEV via an intravenous injection. Although no significant elevation of alanine aminotransferase (ALT) was observed, rat HEV RNA was detected in fecal specimens, and seroconversion was observed in all six monkeys. The partial nucleotide sequences of the rat HEV recovered from the rat HEV-infected monkeys were identical to those of the V-105 strain, indicating that the infection was caused by the rat HEV. The rat HEV recovered from the cynomolgus and rhesus monkeys successfully infected both nude and Sprague-Dawley rats. The entire rat HEV genome recovered from nude rats was identical to that of the V-105 strain, suggesting that the rat HEV replicates in monkeys and infectious viruses were released into the fecal specimens. These results demonstrated that cynomolgus and rhesus monkeys are susceptible to rat HEV, and they indicate the possibility of a zoonotic infection of rat HEV. Cynomolgus and rhesus monkeys might be useful as animal models for vaccine development.
Asunto(s)
Hepatitis Viral Animal/transmisión , Hepevirus/fisiología , Infecciones por Virus ARN/veterinaria , Zoonosis Virales/transmisión , Alanina Transaminasa/sangre , Animales , Anticuerpos Antivirales/sangre , Heces/virología , Femenino , Hepatitis Viral Animal/virología , Macaca fascicularis , Macaca mulatta , Masculino , Infecciones por Virus ARN/transmisión , Infecciones por Virus ARN/virología , ARN Viral/análisis , Ratas , Zoonosis Virales/virología , Replicación ViralRESUMEN
Human parechoviruses (HPeVs) are being increasingly recognized as pathogens that cause mild-to-life-threatening diseases in children and adults. Recently, nucleic acid detection has become the mainstream method for pathogen detection. However, virus isolation is important for virus detection and further virologic characterization studies, and securing human pathogenic virus bioresources. We recently explored conventional cell lines suitable for human sapovirus isolation and accidentally identified a human duodenal cell line, HuTu80, that supported efficient growth of human parechovirus type 3 (HPeV-3) with clear cytopathic effects (CPE). Subsequently, we confirmed that all representative prototype HPeV type 1-6 strains were propagated efficiently in HuTu80 cells with clear CPE within 4 days. Another human ileocecal cell line, HCT-8 (HRT-18), also supports HPeV propagation except for HPeV-3. Titer values in HuTu80 and HCT-8 reached approximately 6.83-8.83 and 6.50-8.17 log10 50% tissue culture infectious dose/50 µL, respectively, when inoculated with multiplicity of infection of 0.0025. Previously reported cell lines likely support HPeV types 1-6 with different efficiency, especially for HPeV-3. In summary, HuTu80 can be used as an additional cell line for HPeV isolation, propagation with a clear CPE to produce a high titer value and for the virus neutralization assays.
Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Adulto , Línea Celular , Niño , Efecto Citopatogénico Viral , Humanos , Lactante , ARN ViralRESUMEN
Rabbit hepatitis E virus (HEV) has been detected among rabbits and recently isolated from immunocompromised patients, suggesting zoonotic transmission. In this study, HEV infection among feral rabbits (Oryctolagus cuniculus) was assessed by detection of anti-HEV antibodies and HEV RNA. The prevalence of anti-HEV antibodies in sera was of 33 % (20/60) and HEV RNA was detected from only one of fecal swabs (1.7 %, 1/58). Furthermore, one naïve rabbit was intravenously inoculated with the suspension of the HEV-positive fecal specimen, exhibiting persistent HEV shedding in feces, intermittent viremia, seroconversion to anti-HEV IgM and IgG, and high alanine aminotransferase (ALT) values, indicating persistent HEV infection. The isolate JP-59 had a length of 7,282 bp excluding a poly (A) tail and possessed the characteristic 93 bp-insertion in ORF1. Phylogenetic analysis indicated that JP-59 formed a cluster with other rabbit HEV isolates from rabbits and human origin. The JP-59 shared the nucleotide sequence identities less than 87 % with other rabbit HEVs, suggesting that a novel rabbit HEV strain was circulating in Japan.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Anticuerpos Antihepatitis/sangre , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Virus de la Hepatitis E/aislamiento & purificación , Japón/epidemiología , Filogenia , ARN Viral/genética , ConejosRESUMEN
Novel genotypes of hepatitis E virus (HEV), i.e., HEV-5, HEV-7, and HEV-8, have been identified in wild boar, dromedary camels, and Bactrian camels, respectively, and they transmit to cynomolgus monkeys in a trans-species manner, raising the potential for zoonotic infection. Rabbits are the natural reservoir for rabbit HEV, but they are also susceptible to HEV-3 and HEV-4. It has been unknown whether rabbits are susceptible to HEV-5, HEV-7, and HEV-8. To investigate the infectivity of novel HEVs in rabbits and to assess whether rabbits are appropriate animal models for these HEVs, we inoculated Japanese white rabbits with HEV-5, HEV-7, and HEV-8, respectively. We observed that viral RNA was present in the fecal specimens of the HEV-8-inoculated rabbits and anti-HEV IgG antibodies were present in its sera, although anti-HEV IgM was undetectable and no significant elevation of ALT was observed. These results indicated that HEV-8 crossed species and infected the rabbits. No evidence for replication was observed in HEV-5 and HEV-7, suggesting that rabbits are not susceptible to these genotypes. The antibodies elicited in the HEV-8-infected rabbits did not protect them from the rabbit HEV challenge, suggesting that the antigenicity differs between HEV-8 and rabbit HEV. Antigenic analyses demonstrated that anti-HEV-8 antibodies reacted more strongly with homologous HEV-8 virus-like particles (VLPs) compared to heterologous rabbit HEV VLPs, but anti-rabbit HEV antibody had similar reactivity to the VLPs of rabbit HEV and HEV-8, suggesting that HEV-8 lacks some epitope(s) that exist in rabbit HEV and induced the neutralizing antibodies against rabbit HEV.
RESUMEN
Owing to genotype-specific neutralizing antibodies, analyzing differences in the immunogenic variation among dengue virus (DENV) genotypes is central to effective vaccine development. Herein, we characterized the viral kinetics and antibody response induced by DENV type 2 Asian I (AI) and Asian/American (AA) genotypes using marmosets (Callithrix jacchus) as models. Two groups of marmosets were inoculated with AI and AA genotypes, and serial plasma samples were collected. Viremia levels were determined using quantitative reverse transcription-PCR, plaque assays, and antigen enzyme-linked immunosorbent assay (ELISA). Anti-DENV immunoglobulin M and G antibodies, neutralizing antibody titer, and antibody-dependent enhancement (ADE) activity were determined using ELISA, plaque reduction neutralization test, and ADE assay, respectively. The AI genotype induced viremia for a longer duration, but the AA genotype induced higher levels of viremia. After four months, the neutralizing antibody titer induced by the AA genotype remained high, but that induced by the AI genotype waned. ADE activity toward Cosmopolitan genotypes was detected in marmosets inoculated with the AI genotype. These findings indicate discrepancies between heterologous genotypes that influence neutralizing antibodies and viremia in marmosets, a critical issue in vaccine development.
RESUMEN
Rabbit hepatitis E virus (HEV) is a novel HEV belonging to genotype 3 (HEV-3) in the Orthohepevirus A species of the genus Hepevirus, family Hepeviridae. Rabbit HEV was originally isolated from rabbits and found to cause zoonotic infection. Although rabbit HEV can be successfully grown in culture with several cell lines, including the human carcinoma cell line PLC/PRF/5, it is difficult to obtain the large amounts of viral antigen required for diagnosis and vaccine development. In this study, we expressed N-terminal 13 and 111 aa-truncated rabbit HEV ORF2 proteins using recombinant baculoviruses and obtained two types of virus-like particles (VLPs), RnVLPs and RsVLPs with ~35 and 24 nm diameter, respectively. Anti-rabbit HEV IgG antibodies were induced in high titer by immunizing rabbits with RnVLPs or RsVLPs. The antibody secretion in the serum persisted more than three years. RsVLPs showed stronger antigenic cross-reactivity against HEV-1, HEV-3 and HEV-4 than rat HEV. Moreover, anti-RsVLPs antibodies neutralized not only the cognate virus but also HEV-1, HEV-3 and HEV-4 ex vivo, indicating that rabbit HEV had the same serotype as human HEVs. In contrast, the antibody did not block rat HEV infection, demonstrating that rat HEV belonged to a different serotype. Animal experiments indicated that immunization with either RnVLPs or RsVLPs completely protected the rabbits from challenge by rabbit HEV, suggesting that the VLPs are candidates for rabbit HEV vaccine development.
Asunto(s)
Anticuerpos Antivirales/sangre , Baculoviridae/genética , Virus de la Hepatitis E/inmunología , Hepatitis E/prevención & control , Inmunogenicidad Vacunal , Vacunas de Partículas Similares a Virus/inmunología , Proteínas Virales/inmunología , Animales , Femenino , Hepatitis E/inmunología , Virus de la Hepatitis E/genética , Inmunoglobulina G/sangre , Conejos , Desarrollo de Vacunas , Vacunas de Partículas Similares a Virus/administración & dosificación , Proteínas Virales/administración & dosificación , Proteínas Virales/genéticaRESUMEN
SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/veterinaria , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Cinética , Depleción Linfocítica/veterinaria , Masculino , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral/inmunologíaRESUMEN
Bactrian camel hepatitis E virus (HEV) is a novel HEV belonging to genotype 8 (HEV-8) in the Orthohepevirus A species of the genus Hepevirus in the family Hepeviridae. HEV-8 cross-transmits to cynomolgus monkeys and has a potential risk for zoonotic infection. Until now, neither a cell-culture system to grow the virus nor a reverse genetics system to generate the virus has been developed. To generate replication-competent HEV-8 and to establish a cell-culture system, we synthesized capped genomic HEV-8 RNAs by in vitro transcription and used them to transfect into PLC/PRF/5 cells. A HEV-8 strain, HEV-8M2, was recovered from the capped HEV-8 RNA-transfected cell-culture supernatants and subsequently passaged in the cells, demonstrating that PLC/PRF/5 cells were capable of supporting the replication of the HEV-8, and that a cell-culture system for HEV-8 was successfully established. In addition to PLC/PRF/5 cells, A549 and Caco-2 cells appeared to be competent for the replication, but HepG2 C3/A, Vero, Hela S3, HEp-2C, 293T and GL37 cells were incompetent. The HEV-8M2 strain was capable of infecting cynomolgus monkeys by an intravenous inoculation, indicating that HEV-8 was infectious and again carried a risk for zoonotic infection. In contrast, HEV-8 did not infect nude rats and BALB/c nude mice, suggesting that the reservoir of HEV-8 was limited. In addition, the replication of the HEV-8M2 strain was efficiently abrogated by ribavirin but not by favipiravir, suggesting that ribavirin is a drug candidate for therapeutic treatment of HEV-8-induced hepatitis. The infectious HEV-8 produced by a reverse genetics system would be useful to elucidate the mechanisms of HEV replication and the pathogenesis of type E hepatitis.