Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862481

RESUMEN

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Quinasas DyrK , Proteínas Fúngicas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Animales , Antifúngicos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Ratones , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Azoles/farmacología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pulmón/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Femenino
2.
Curr Opin Microbiol ; 79: 102489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754292

RESUMEN

Sulfur is an essential macronutrient for life, and consequently, all living organisms must acquire it from external sources to thrive and grow. Sulfur is a constituent of a multitude of crucial molecules, such as the S-containing proteinogenic amino acids cysteine and methionine; cofactors and prosthetic groups, such as coenzyme-A and iron-sulfur (Fe-S) clusters; and other essential organic molecules, such as glutathione or S-adenosylmethionine. Additionally, sulfur in cysteine thiols is an active redox group that plays paramount roles in protein stability, enzyme catalysis, and redox homeostasis. Furthermore, H2S is gaining more attention as a crucial signaling molecule that influences metabolism and physiological functions. Given its importance, it is not surprising that sulfur plays key roles in the host-pathogen interaction. However, in contrast to its well-recognized involvement in the plant-pathogen interaction, the specific contributions of sulfur to the human-fungal interaction are much less understood. In this short review, I highlight some of the most important known mechanisms and propose directions for further research.


Asunto(s)
Hongos , Interacciones Huésped-Patógeno , Azufre , Azufre/metabolismo , Hongos/metabolismo , Hongos/fisiología , Hongos/genética , Humanos , Oxidación-Reducción , Cisteína/metabolismo
3.
J Fungi (Basel) ; 10(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38535218

RESUMEN

One of the systems responsible for the recognition and repair of mistakes occurring during cell replication is the DNA mismatch repair (MMR) system. Two major protein complexes constitute the MMR pathway: MutS and MutL. Here, we investigated the possible relation of four A. fumigatus MMR genes (msh2, msh6, pms1, and mlh1) with the development of azole resistance related to the phenomenon of multi-drug resistance. We examined the MMR gene variations in 163 Aspergillus fumigatus genomes. Our analysis showed that genes msh2, pms1, and mlh1 have low genetic variability and do not seem to correlate with drug resistance. In contrast, there is a nonsynonymous mutation (G240A) in the msh6 gene that is harbored by 42% of the strains, most of them also harboring the TR34/L98H azole resistance mechanism in cyp51A. The msh6 gene was deleted in the akuBKU80A. fumigatus strain, and the ∆msh6 isolates were analyzed for fitness, azole susceptibility, and virulence capacity, showing no differences compared with the akuBKU80 parental strain. Wild-type msh6 and Δmsh6 strains were grown on high concentrations of azole and other non-azole fungicides used in crop protection. A 10- and 2-fold higher mutation frequency in genes that confer resistance to boscalid and benomyl, respectively, were observed in Δmsh6 strains compared to the wild-type. This study suggests a link between Msh6 and fungicide resistance acquisition.

4.
J Fungi (Basel) ; 9(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37623576

RESUMEN

Invasive aspergillosis (IA) is a major cause of morbidity and mortality in patients receiving allogeneic haematopoieticcell transplantation. The deep immunosuppression and a variety of potential additional complications developed in these patients result in IA reaching mortality rates of around 50-60%. This mortality is even higher when the patients are infected with azole-resistant isolates, demonstrating that, despite the complexity of management, adequate azole treatment can have a beneficial effect. It is therefore paramount to understand the reasons why antifungal treatment of IA infections caused by azole-susceptible isolates is often unsuccessful. In this respect, there are already various factors known to be important for treatment efficacy, for instance the drug concentrations achieved in the blood, which are thus often monitored. We hypothesize that antifungal persistence may be another important factor to consider. In this study we present two case reports of haematological patients who developed proven IA and suffered treatment failure, despite having been infected with susceptible isolates, receiving correct antifungal treatment and reaching therapeutic levels of the azole. Microbiological analysis of the recovered infective isolates showed that the patients were infected with multiple strains, several of which were persisters to voriconazole and/or isavuconazole. Therefore, we propose that azole persistence may have contributed to therapeutic failure in these patients and that this phenomenon should be considered in future studies.

5.
Res Sq ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398159

RESUMEN

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance. As part of the A. fumigatus genome-wide knockout program (COFUN), we have completed the generation of a library that consists of 120 genetically barcoded null mutants in genes that encode the protein kinase cohort of A. fumigatus. We have employed a competitive fitness profiling approach (Bar-Seq), to identify targets which when deleted result in hypersensitivity to the azoles and fitness defects in a murine host. The most promising candidate from our screen is a previously uncharacterised DYRK kinase orthologous to Yak1 of Candida albicans, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. Here we show that the orthologue YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress via phosphorylation of the Woronin body tethering protein Lah. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and impacts growth in murine lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit Yak1 in C. albicans prevents stress mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.

6.
Essays Biochem ; 67(5): 853-863, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37449444

RESUMEN

Methionine synthases (MetH) catalyse the methylation of homocysteine (Hcy) with 5-methyl-tetrahydrofolate (5, methyl-THF) acting as methyl donor, to form methionine (Met) and tetrahydrofolate (THF). This function is performed by two unrelated classes of enzymes that differ significantly in both their structures and mechanisms of action. The genomes of plants and many fungi exclusively encode cobalamin-independent enzymes (EC.2.1.1.14), while some fungi also possess proteins from the cobalamin-dependent (EC.2.1.1.13) family utilised by humans. Methionine synthase's function connects the methionine and folate cycles, making it a crucial node in primary metabolism, with impacts on important cellular processes such as anabolism, growth and synthesis of proteins, polyamines, nucleotides and lipids. As a result, MetHs are vital for the viability or virulence of numerous prominent human and plant pathogenic fungi and have been proposed as promising broad-spectrum antifungal drug targets. This review provides a summary of the relevance of methionine synthases to fungal metabolism, their potential as antifungal drug targets and insights into the structures of both classes of MetH.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Antifúngicos , Humanos , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/química , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Virulencia , Tetrahidrofolatos/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacología , Metionina/metabolismo
7.
Microbiol Spectr ; : e0477022, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912663

RESUMEN

Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.

8.
iScience ; 26(3): 106147, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36843843

RESUMEN

Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated nox mutants for duox, nox5 and cyba (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing HyPer, which permits the measurement of ROS levels. Homozygous duox mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, duox:cyba double mutants showed a greater effect on fin regeneration than the single duox mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.

9.
mBio ; 13(6): e0221522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36286521

RESUMEN

Aspergillosis, in its various manifestations, is a major cause of morbidity and mortality. Very few classes of antifungal drugs have been approved for clinical use to treat these diseases and resistance to the first-line therapeutic class, the triazoles are increasing. A new class of antifungals that target pyrimidine biosynthesis, the orotomides, are currently in development with the first compound in this class, olorofim in late-stage clinical trials. In this study, we identified an antagonistic action of the triazoles on the action of olorofim. We showed that this antagonism was the result of an azole-induced upregulation of the pyrimidine biosynthesis pathway. Intriguingly, we showed that loss of function in the higher order transcription factor, HapB a member of the heterotrimeric HapB/C/E (CBC) complex or the regulator of nitrogen metabolic genes AreA, led to cross-resistance to both the azoles and olorofim, indicating that factors that govern resistance were under common regulatory control. However, the loss of azole-induced antagonism required decoupling of the pyrimidine biosynthetic pathway in a manner independent of the action of a single transcription factor. Our study provided evidence for complex transcriptional crosstalk between the pyrimidine and ergosterol biosynthetic pathways. IMPORTANCE Aspergillosis is a spectrum of diseases and a major cause of morbidity and mortality. To treat these diseases, there are a few classes of antifungal drugs approved for clinical use. Resistance to the first line treatment, the azoles, is increasing. The first antifungal, olorofim, which is in the novel class of orotomides, is currently in development. Here, we showed an antagonistic effect between the azoles and olorofim, which was a result of dysregulation of the pyrimidine pathway, the target of olorofim, and the ergosterol biosynthesis pathway, the target of the azoles.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Azoles/farmacología , Antifúngicos/farmacología , Redes Reguladoras de Genes , Aspergilosis/microbiología , Pirimidinas/metabolismo , Triazoles/farmacología , Factores de Transcripción/metabolismo , Ergosterol , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana , Proteínas Fúngicas/genética
10.
mBio ; 13(3): e0044722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420487

RESUMEN

Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≥0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.


Asunto(s)
Aspergillus fumigatus , Águilas , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Caspofungina/farmacología , Águilas/metabolismo , Equinocandinas/metabolismo , Equinocandinas/farmacología , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Esporas Fúngicas/metabolismo
11.
J Fungi (Basel) ; 8(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35330297

RESUMEN

Fungal infections are a growing threat to human health. Despite their clinical relevance, there is a surprisingly limited availability of clinically approved antifungal agents, which is seriously aggravated by the recent appearance and fast spread of drug resistance. It is therefore clear that there is an urgent need for novel and efficient antifungals. In this context, metabolism is recognized as a promising source for new antifungal targets and, indeed, there are new drugs in development that target metabolic pathways. Fungal sulfur metabolism is particularly interesting, as many of its processes are essential for viability and/or pathogenicity and it shows substantial differences with human metabolism. This short-review will summarize our current knowledge of sulfur-related genes and routes that are important for Aspergillus fumigatus virulence, which consequently could be pursued for drug development.

12.
Environ Microbiol ; 24(2): 643-666, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33687784

RESUMEN

Aspergillus fumigatus can grow over a broad range of pH values even though zinc availability is greatly conditioned by ambient pH. It has been previously shown that regulation of zinc homeostatic genes in this fungus relies on the transcription factor ZafA. In addition, their expression is further modulated by the transcription factor PacC depending on ambient pH, which allows this fungus to grow in diverse types of niches, including soils and the lungs of immunosuppressed hosts. In this work the regulation by PacC of genes zrfB and zrfC that are expressed, respectively, under acidic and alkaline zinc-limiting conditions have been analysed in detail. Thus, data that extend the current model for PacC function, including the role of the full-length PacC72 protein and the PacC processed forms (PacC53 and PacC27 ) on gene expression has been provided, and a new mechanism for the repression of acid-expressed genes in alkaline media based on interference with the start of transcription has been described. Moreover, it was proposed that the transcription of both acid-expressed and alkaline-expressed genes under zinc-limiting conditions might also rely on a third factor (putatively Pontin/Reptin), which may be required to integrate the action of PacC and ZafA into gene specific transcriptional responses.


Asunto(s)
Aspergillus fumigatus , Regulación Fúngica de la Expresión Génica , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Zinc/metabolismo
13.
Antimicrob Agents Chemother ; 65(10): e0125221, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34310208

RESUMEN

Aspergillus fumigatus is the most common cause of invasive fungal mold infections in immunocompromised individuals. Current antifungal treatment relies heavily on the triazole antifungals which inhibit fungal Erg11/Cyp51 activity and subsequent ergosterol biosynthesis. However, resistance, due primarily to cyp51 mutation, is rapidly increasing. A. fumigatus contains two Cyp51 isoenzymes, Cyp51A and Cyp51B. Overexpression and mutation of Cyp51A is a major cause of triazole resistance in A. fumigatus. The role of Cyp51B in generating resistance is unclear. Here, we show that overexpression or mutation of cyp51B results in triazole resistance. We demonstrate that introduction of a G457S Cyp51B mutation identified in a resistant clinical isolate results in voriconazole resistance in a naive recipient strain. Our results indicate that mutations in cyp51B resulting in clinical resistance do exist and should be monitored.


Asunto(s)
Aspergillus fumigatus , Lanosterol , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Mutación , Mutación Puntual , Esteroles , Triazoles/farmacología
14.
PLoS Biol ; 19(6): e3001247, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061822

RESUMEN

Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients' lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host-pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Sulfuros/metabolismo , Células A549 , Adulto , Animales , Aspergilosis/epidemiología , Aspergilosis/genética , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Cistationina gamma-Liasa/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Incidencia , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Células THP-1 , Receptores de Trasplantes , Virulencia/efectos de los fármacos , Adulto Joven
15.
Methods Mol Biol ; 2260: 207-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33405040

RESUMEN

Animal models are fundamental to unravel the complex nature of fungal infections in the host context. Here, a versatile murine model of hematopoietic cell transplantation (HCT) is described. This model can be used to investigate the establishment and progression of fungal infections after HCT and to elucidate how different transplant variables affect the recovery of host immunity.


Asunto(s)
Hongos/patogenicidad , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Huésped Inmunocomprometido , Micosis/microbiología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Hongos/inmunología , Interacciones Huésped-Patógeno , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Micosis/inmunología
16.
J Fungi (Basel) ; 6(4)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255951

RESUMEN

The emergence and spread of Aspergillus fumigatus azole resistance has been acknowledged worldwide. The main problem of azole resistance is the limited therapeutic options for patients suffering aspergillosis. Azole resistance mechanisms have been mostly linked to the enzyme Cyp51A, a target of azole drugs, with a wide variety of modifications responsible for the different resistance mechanisms described to date. However, there are increasing reports of A. fumigatus strains showing azole resistance without Cyp51A modifications, and thus, novel resistance mechanisms are being explored. Here, we characterized two isogenic A. fumigatus clinical strains isolated two years apart from the same patient. Both strains were resistant to clinical azoles but showed different azole resistance mechanisms. One strain (CM8940) harbored a previously described G54A mutation in Cyp51A while the other strain (CM9640) had a novel G457S mutation in Cyp51B, the other target of azoles. In addition, this second strain had a F390L mutation in Hmg1. CM9640 showed higher levels of gene expression of cyp51A, cyp51B and hmg1 than the CM8940 strain. The role of the novel mutation found in Cyp51B together with the contribution of a mutation in Hmg1 in azole resistance is discussed.

18.
mBio ; 11(5)2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051366

RESUMEN

There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in Aspergillus fumigatus the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine. Interestingly, growth can be recovered in the presence of certain metabolites, which shows that metH is a conditionally essential gene and consequently should be targeted in established infections for a more comprehensive validation. Accordingly, we have validated the use of the tetOFF genetic model in fungal research and improved its performance in vivo to achieve initial validation of targets in models of established infection. We show that repression of metH in growing hyphae halts growth in vitro, which translates into a beneficial effect when targeting established infections using this model in vivo Finally, a structure-based virtual screening of methionine synthases reveals key differences between the human and fungal structures and unravels features in the fungal enzyme that can guide the design of novel specific inhibitors. Therefore, methionine synthase is a valuable target for the development of new antifungals.IMPORTANCE Fungal pathogens are responsible for millions of life-threatening infections on an annual basis worldwide. The current repertoire of antifungal drugs is very limited and, worryingly, resistance has emerged and already become a serious threat to our capacity to treat fungal diseases. The first step to develop new drugs is often to identify molecular targets in the pathogen whose inhibition during infection can prevent its growth. However, the current models are not suitable to validate targets in established infections. Here, we have characterized the promising antifungal target methionine synthase in great detail, using the prominent fungal pathogen Aspergillus fumigatus as a model. We have uncovered the underlying reason for its essentiality and confirmed its druggability. Furthermore, we have optimized the use of a genetic system to show a beneficial effect of targeting methionine synthase in established infections. Therefore, we believe that antifungal drugs to target methionine synthase should be pursued and additionally, we provide a model that permits gaining information about the validity of antifungal targets in established infections.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , Animales , Modelos Animales de Enfermedad , Genes Esenciales , Aspergilosis Pulmonar Invasiva , Larva/microbiología , Leucopenia , Masculino , Ratones , Mariposas Nocturnas/microbiología , Virulencia/genética
19.
Pathogens ; 9(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781694

RESUMEN

Pseudomonas aeruginosa has long been established as the most prevalent respiratory pathogen in Cystic Fibrosis (CF) patients, with opportunistic infection causing profound morbidity and mortality. Recently, Aspergillus fumigatus has also been recognised as a key contributor to CF lung deterioration, being consistently associated with decreased lung function and worsened prognosis in these patients. As clinical evidence for the common occurrence of combined infection with these two pathogens increases, research into the mechanism and consequences of their interaction is becoming more relevant. Clinical evidence suggests a synergistic effect of combined infection, which translates into a poorer prognosis for the patients. In vitro results from the laboratory have identified a variety of possible synergistic and antagonistic interactions between A. fumigatus and P. aeruginosa. Here, we present a comprehensive overview of the complex environment of the CF lung and discuss how it needs to be considered to determine the exact molecular interactions that A. fumigatus and P. aeruginosa undergo during combined infection and their effects on the host.

20.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019790

RESUMEN

Aspergillus fumigatus is an opportunistic fungal pathogen that can cause life-threatening invasive lung infections in immunodeficient patients. The cellular and molecular processes of infection during onset, establishment, and progression of A. fumigatus infections are highly complex and depend on both fungal attributes and the immune status of the host. Therefore, preclinical animal models are of paramount importance to investigate and gain better insight into the infection process. Yet, despite their extensive use, commonly employed murine models of invasive pulmonary aspergillosis are not well understood due to analytical limitations. Here, we present quantitative light sheet fluorescence microscopy (LSFM) to describe fungal growth and the local immune response in whole lungs at cellular resolution within its anatomical context. We analyzed three very common murine models of pulmonary aspergillosis based on immunosuppression with corticosteroids, chemotherapy-induced leukopenia, or myeloablative irradiation. LSFM uncovered distinct architectures of fungal growth and degrees of tissue invasion in each model. Furthermore, LSFM revealed the spatial distribution, interaction, and activation of two key immune cell populations in antifungal defense: alveolar macrophages and polymorphonuclear neutrophils. Interestingly, the patterns of fungal growth correlated with the detected effects of the immunosuppressive regimens on the local immune cell populations. Moreover, LSFM demonstrates that the commonly used intranasal route of spore administration did not result in complete intra-alveolar deposition, as about 80% of fungal growth occurred outside the alveolar space. Hence, characterization by LSFM is more rigorous than by previously used methods employing murine models of invasive pulmonary aspergillosis and pinpoints their strengths and limitations.IMPORTANCE The use of animal models of infection is essential to advance our understanding of the complex host-pathogen interactions that take place during Aspergillus fumigatus lung infections. As in the case of humans, mice need to suffer an immune imbalance in order to become susceptible to invasive pulmonary aspergillosis (IPA), the most serious infection caused by A. fumigatus There are several immunosuppressive regimens that are routinely used to investigate fungal growth and/or immune responses in murine models of invasive pulmonary aspergillosis. However, the precise consequences of the use of each immunosuppressive model for the local immune populations and for fungal growth are not completely understood. Here, to pin down the scenarios involving commonly used IPA models, we employed light sheet fluorescence microscopy (LSFM) to analyze whole lungs at cellular resolution. Our results will be valuable to optimize and refine animal models to maximize their use in future research.


Asunto(s)
Aspergillus fumigatus/inmunología , Interacciones Huésped-Patógeno/inmunología , Aspergilosis Pulmonar Invasiva/inmunología , Pulmón/inmunología , Pulmón/microbiología , Corticoesteroides/administración & dosificación , Animales , Aspergillus fumigatus/crecimiento & desarrollo , Modelos Animales de Enfermedad , Quimioterapia , Femenino , Imagenología Tridimensional , Inmunosupresores/administración & dosificación , Aspergilosis Pulmonar Invasiva/patología , Leucopenia/inducido químicamente , Pulmón/citología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Neutrófilos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA