Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 122(5): 753-766, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36739476

RESUMEN

Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.


Asunto(s)
Actinas , Fibronectinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimiento Celular/fisiología , Fibronectinas/metabolismo , Integrinas/metabolismo , Humanos , Línea Celular Tumoral
2.
J Struct Biol ; 213(4): 107808, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742832

RESUMEN

A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized filamentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Biología Computacional/métodos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Aprendizaje Profundo , Ratones , Seudópodos/metabolismo , Seudópodos/ultraestructura , Reproducibilidad de los Resultados
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33483418

RESUMEN

The biphasic adhesion-velocity relation is a universal observation in mesenchymal cell motility. It has been explained by adhesion-promoted forces pushing the front and resisting motion at the rear. Yet, there is little quantitative understanding of how these forces control cell velocity. We study motion of MDA-MB-231 cells on microlanes with fields of alternating Fibronectin densities to address this topic and derive a mathematical model from the leading-edge force balance and the force-dependent polymerization rate. It reproduces quantitatively our measured adhesion-velocity relation and results with keratocytes, PtK1 cells, and CHO cells. Our results confirm that the force pushing the leading-edge membrane drives lamellipodial retrograde flow. Forces resisting motion originate along the whole cell length. All motion-related forces are controlled by adhesion and velocity, which allows motion, even with higher Fibronectin density at the rear than at the front. We find the pathway from Fibronectin density to adhesion structures to involve strong positive feedbacks. Suppressing myosin activity reduces the positive feedback. At transitions between different Fibronectin densities, steady motion is perturbed and leads to changes of cell length and front and rear velocity. Cells exhibit an intrinsic length set by adhesion strength, which, together with the length dynamics, suggests a spring-like front-rear interaction force. We provide a quantitative mechanistic picture of the adhesion-velocity relation and cell response to adhesion changes integrating force-dependent polymerization, retrograde flow, positive feedback from integrin to adhesion structures, and spring-like front-rear interaction.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Fibronectinas/genética , Células Madre Mesenquimatosas/citología , Actinas/genética , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/genética , Cricetinae , Cricetulus , Femenino , Humanos , Integrinas/genética , Células Madre Mesenquimatosas/metabolismo , Modelos Teóricos , Seudópodos/genética
4.
J Cell Sci ; 133(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32094266

RESUMEN

Efficient migration on adhesive surfaces involves the protrusion of lamellipodial actin networks and their subsequent stabilization by nascent adhesions. The actin-binding protein lamellipodin (Lpd) is thought to play a critical role in lamellipodium protrusion, by delivering Ena/VASP proteins onto the growing plus ends of actin filaments and by interacting with the WAVE regulatory complex, an activator of the Arp2/3 complex, at the leading edge. Using B16-F1 melanoma cell lines, we demonstrate that genetic ablation of Lpd compromises protrusion efficiency and coincident cell migration without altering essential parameters of lamellipodia, including their maximal rate of forward advancement and actin polymerization. We also confirmed lamellipodia and migration phenotypes with CRISPR/Cas9-mediated Lpd knockout Rat2 fibroblasts, excluding cell type-specific effects. Moreover, computer-aided analysis of cell-edge morphodynamics on B16-F1 cell lamellipodia revealed that loss of Lpd correlates with reduced temporal protrusion maintenance as a prerequisite of nascent adhesion formation. We conclude that Lpd optimizes protrusion and nascent adhesion formation by counteracting frequent, chaotic retraction and membrane ruffling.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Seudópodos , Citoesqueleto de Actina , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Adhesión Celular , Movimiento Celular
5.
Radiat Prot Dosimetry ; 156(3): 356-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23538892

RESUMEN

Dose escalation with high-energy X rays of medical linear accelerators (linacs) in radiotherapy offers several distinct advantages over the lower energy photons. However, owing to photoneutron reactions, interaction of high-energy photons (>8 MV) with various high-Z nuclei of the materials in the linac head components produces unavoidable neutrons. The aim of this study was to evaluate the photoneutron dose equivalent per unit therapeutic X-ray dose of 18 MV, GE Saturne 20 linac in the treatment room using Monte Carlo (MC) MCNP linac head full simulation as well as thermoluminescence dosemeter measurements. This machine is one of the old linac models manufactured by General Electric Company; however, it is widely used in the developing countries because of low cost and simple maintenance for radiotherapy applications. The results showed a significant photoneutron dose from Saturne 20 linac head components especially at distances near the linac head (<150 cm). Results of this work could be used in several applications, especially designing bunker and entrance door shielding against neutrons produced by photoneutron reactions in GE Saturne 20. However, a detailed cost optimisation for a specific room would require a dedicated calculation.


Asunto(s)
Neutrones , Aceleradores de Partículas , Fotones , Radioterapia de Alta Energía , Simulación por Computador , Humanos , Modelos Teóricos , Método de Montecarlo , Dosis de Radiación , Dosimetría Termoluminiscente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...